Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Cell Rep ; 42(11): 113350, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37897726

RESUMEN

Although high-fat diet (HFD)-induced gut microbiota dysbiosis is known to affect atherosclerosis, the underlying mechanisms remain to be fully explored. Here, we show that the progression of atherosclerosis depends on a gut microbiota shaped by an HFD but not a high-cholesterol (HC) diet and, more particularly, on low fiber (LF) intake. Mechanistically, gut lymphoid cells impacted by HFD- or LF-induced microbiota dysbiosis highly proliferate in mesenteric lymph nodes (MLNs) and migrate from MLNs to the periphery, which fuels T cell accumulation within atherosclerotic plaques. This is associated with the induction of mucosal addressin cell adhesion molecule 1 (MAdCAM-1) within plaques and the presence of enterotropic lymphocytes expressing ß7 integrin. MLN resection or lymphocyte deficiency abrogates the pro-atherogenic effects of a microbiota shaped by LF. Our study shows a pathological link between a diet-shaped microbiota, gut immune cells, and atherosclerosis, suggesting that a diet-modulated microbiome might be a suitable therapeutic target to prevent atherosclerosis.


Asunto(s)
Aterosclerosis , Microbiota , Placa Aterosclerótica , Humanos , Animales , Ratones , Disbiosis/inducido químicamente , Linfocitos , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL
3.
Nat Commun ; 14(1): 4622, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528097

RESUMEN

Caspase recruitment-domain containing protein 9 (CARD9) is a key signaling pathway in macrophages but its role in atherosclerosis is still poorly understood. Global deletion of Card9 in Apoe-/- mice as well as hematopoietic deletion in Ldlr-/- mice increases atherosclerosis. The acceleration of atherosclerosis is also observed in Apoe-/-Rag2-/-Card9-/- mice, ruling out a role for the adaptive immune system in the vascular phenotype of Card9 deficient mice. Card9 deficiency alters macrophage phenotype through CD36 overexpression with increased IL-1ß production, increased lipid uptake, higher cell death susceptibility and defective autophagy. Rapamycin or metformin, two autophagy inducers, abolish intracellular lipid overload, restore macrophage survival and autophagy flux in vitro and finally abolish the pro-atherogenic effects of Card9 deficiency in vivo. Transcriptomic analysis of human CARD9-deficient monocytes confirms the pathogenic signature identified in murine models. In summary, CARD9 is a key protective pathway in atherosclerosis, modulating macrophage CD36-dependent inflammatory responses, lipid uptake and autophagy.


Asunto(s)
Aterosclerosis , Humanos , Animales , Ratones , Aterosclerosis/metabolismo , Autofagia/genética , Apolipoproteínas E/genética , Lípidos , Proteínas Adaptadoras de Señalización CARD/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL
5.
Nat Commun ; 13(1): 6592, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329047

RESUMEN

JAK2V617F mutation is associated with an increased risk for athero-thrombotic cardiovascular disease, but its role in aortic disease development and complications remains unknown. In a cohort of patients with myeloproliferative neoplasm, JAK2V617F mutation was identified as an independent risk factor for dilation of both the ascending and descending thoracic aorta. Using single-cell RNA-seq, complementary genetically-modified mouse models, as well as pharmacological approaches, we found that JAK2V617F mutation was associated with a pathogenic pro-inflammatory phenotype of perivascular tissue-resident macrophages, which promoted deleterious aortic wall remodeling at early stages, and dissecting aneurysm through the recruitment of circulating monocytes at later stages. Finally, genetic manipulation of tissue-resident macrophages, or treatment with a Jak2 inhibitor, ruxolitinib, mitigated aortic wall inflammation and reduced aortic dilation and rupture. Overall, JAK2V617F mutation drives vascular resident macrophages toward a pathogenic phenotype and promotes dissecting aortic aneurysm.


Asunto(s)
Aneurisma de la Aorta , Disección Aórtica , Ratones , Animales , Disección Aórtica/patología , Fenotipo , Mutación , Macrófagos/patología , Aneurisma de la Aorta/genética , Aneurisma de la Aorta/complicaciones
6.
Front Cardiovasc Med ; 9: 848680, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36176983

RESUMEN

Introduction: Amine oxidase copper containing 3 (AOC3) displays adhesion between leukocytes and endothelial cells and enzymatic functions. Given its controversial role in atherogenesis, we proposed to investigate the involvement of AOC3 in the formation of atherosclerotic plaques in ApoE-/-AOC3-/- mice and human coronary arteries. Methods: Lesions, contractile markers, and AOC3 were studied in aortic tissues from 15- and 25-week-old mice and different stages of human coronary atherosclerotic arteries by immunohistochemistry (IHC) and/or western blot. Human VSMCs, treated or not with LJP1586, an AOC3 inhibitor, were used to measure differentiation markers by qPCR. AOC3 co-localization with specific cell markers was studied by using confocal microscopy in mice and human samples. Results: At 15 weeks old, the absence of AOC3 was associated with increased lesion size, α-SMA, and CD3 staining in the plaque independently of a cholesterol modification. At 25 weeks old, advanced plaques were larger with equivalent staining for α-SMA while CD3 increased in the media from ApoE-/-AOC3-/- mice. At both ages, the macrophage content of the lesion was not modified. Contractile markers decreased whereas MCP-1 appeared augmented only in the 15-week-old ApoE-/-AOC3. AOC3 is mainly expressed by mice and human VSMC is slightly expressed by endothelium but not by macrophages. Conclusion: AOC3 knock-out increased atherosclerotic plaques at an early stage related to a VSMC dedifferentiation associated with a higher T cells recruitment in plaques explained by the MCP-1 augmentation. This suggests that AOC3 may have an important role in atherosclerosis independent of its canonical inflammatory effect. The dual role of AOC3 impacts therapeutic strategies using pharmacological regulators of SSAO activity.

7.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34576067

RESUMEN

Cardiovascular disease (CVD) is one of the major causes of mortality worldwide. Inflammation is the underlying common mechanism involved in CVD. It has been recently related to amino acid metabolism, which acts as a critical regulator of innate and adaptive immune responses. Among different metabolites that have emerged as important regulators of immune and inflammatory responses, tryptophan (Trp) metabolites have been shown to play a pivotal role in CVD. Here, we provide an overview of the fundamental aspects of Trp metabolism and the interplay between the dysregulation of the main actors involved in Trp metabolism such as indoleamine 2, 3-dioxygenase 1 (IDO) and CVD, including atherosclerosis and myocardial infarction. IDO has a prominent and complex role. Its activity, impacting on several biological pathways, complicates our understanding of its function, particularly in CVD, where it is still under debate. The discrepancy of the observed IDO effects could be potentially explained by its specific cell and tissue contribution, encouraging further investigations regarding the role of this enzyme. Thus, improving our understanding of the function of Trp as well as its derived metabolites will help to move one step closer towards tailored therapies aiming to treat CVD.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Dieta , Triptófano/metabolismo , Enfermedades Cardiovasculares/terapia , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Metaboloma , Modelos Biológicos
8.
Circulation ; 143(6): 566-580, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33272024

RESUMEN

BACKGROUND: Ischemic cardiovascular diseases, particularly acute myocardial infarction (MI), is one of the leading causes of mortality worldwide. Indoleamine 2, 3-dioxygenase 1 (IDO) catalyzes 1 rate-limiting step of L-tryptophan metabolism, and emerges as an important regulator of many pathological conditions. We hypothesized that IDO could play a key role to locally regulate cardiac homeostasis after MI. METHODS: Cardiac repair was analyzed in mice harboring specific endothelial or smooth muscle cells or cardiomyocyte or myeloid cell deficiency of IDO and challenged with acute myocardial infarction. RESULTS: We show that kynurenine generation through IDO is markedly induced after MI in mice. Total genetic deletion or pharmacological inhibition of IDO limits cardiac injury and cardiac dysfunction after MI. Distinct loss of function of IDO in smooth muscle cells, inflammatory cells, or cardiomyocytes does not affect cardiac function and remodeling in infarcted mice. In sharp contrast, mice harboring endothelial cell-specific deletion of IDO show an improvement of cardiac function as well as cardiomyocyte contractility and reduction in adverse ventricular remodeling. In vivo kynurenine supplementation in IDO-deficient mice abrogates the protective effects of IDO deletion. Kynurenine precipitates cardiomyocyte apoptosis through reactive oxygen species production in an aryl hydrocarbon receptor-dependent mechanism. CONCLUSIONS: These data suggest that IDO could constitute a new therapeutic target during acute MI.


Asunto(s)
Células Endoteliales/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/uso terapéutico , Quinurenina/uso terapéutico , Infarto del Miocardio/tratamiento farmacológico , Animales , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/farmacología , Quinurenina/farmacología , Ratones , Infarto del Miocardio/fisiopatología
9.
J Clin Invest ; 131(2)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33258804

RESUMEN

The triggering receptor expressed on myeloid cells 1 (TREM-1) drives inflammatory responses in several cardiovascular diseases but its role in abdominal aortic aneurysm (AAA) remains unknown. Our objective was to explore the role of TREM-1 in a mouse model of angiotensin II-induced (AngII-induced) AAA. TREM-1 expression was detected in mouse aortic aneurysm and colocalized with macrophages. Trem1 gene deletion (Apoe-/-Trem1-/-), as well as TREM-1 pharmacological blockade with LR-12 peptide, limited both AAA development and severity. Trem1 gene deletion attenuated the inflammatory response in the aorta, with a reduction of Il1b, Tnfa, Mmp2, and Mmp9 mRNA expression, and led to a decreased macrophage content due to a reduction of Ly6Chi classical monocyte trafficking. Conversely, antibody-mediated TREM-1 stimulation exacerbated Ly6Chi monocyte aorta infiltration after AngII infusion through CD62L upregulation and promoted proinflammatory signature in the aorta, resulting in worsening AAA severity. AngII infusion stimulated TREM-1 expression and activation on Ly6Chi monocytes through AngII receptor type I (AT1R). In human AAA, TREM-1 was detected and TREM1 mRNA expression correlated with SELL mRNA expression. Finally, circulating levels of sTREM-1 were increased in patients with AAA when compared with patients without AAA. In conclusion, TREM-1 is involved in AAA pathophysiology and may represent a promising therapeutic target in humans.


Asunto(s)
Angiotensina II/efectos adversos , Aneurisma de la Aorta Abdominal/metabolismo , Movimiento Celular/efectos de los fármacos , Monocitos/metabolismo , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Angiotensina II/farmacología , Animales , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/patología , Movimiento Celular/genética , Eliminación de Gen , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones , Ratones Noqueados para ApoE , Monocitos/patología , Receptor Activador Expresado en Células Mieloides 1/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
11.
Front Immunol ; 10: 2113, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31552046

RESUMEN

The intestine has a major role in the digestion and absorption of nutrients, and gut barrier is the first defense line against harmful pathogens. Alteration of the intestinal barrier is associated with enhanced intestinal permeability and development of numerous pathological diseases including gastrointestinal and cardiometabolic diseases. Among the metabolites that play an important role within intestinal health, L Tryptophan (Trp) is one of the nine essential amino acids supplied by diet, whose metabolism appears as a key modulator of gut microbiota, with major impacts on physiological, and pathological pathways. Recently, emerging evidence showed that the Trp catabolism through one major enzyme indoleamine 2,3-dioxygenase 1 (IDO1) expressed by the host affects Trp metabolism by gut microbiota to generate indole metabolites, thereby altering gut function and health in mice and humans. In this mini review, I summarize the most recent advances concerning the role of Trp metabolism in host-microbiota cross-talk in health, and metabolic diseases. This novel aspect of IDO1 function in intestine will better explain its complex roles in a broad range of disease states where the gut function affects local as well as systemic health, and will open new therapeutic strategies.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Enfermedades Metabólicas/metabolismo , Triptófano/metabolismo , Animales , Dieta , Microbioma Gastrointestinal/fisiología , Interacciones Microbiota-Huesped , Humanos , Mucosa Intestinal , Intestinos/patología , Ratones , Microbiota
12.
Arterioscler Thromb Vasc Biol ; 39(6): 1149-1159, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30943775

RESUMEN

Objective- Recent studies suggested the occurrence of phenotypic switching of vascular smooth muscle cells (VSMCs) during the development of aortic aneurysm (AA). However, lineage-tracing studies are still lacking, and the behavior of VSMCs during the formation of dissecting AA is poorly understood. Approach and Results- We used multicolor lineage tracing of VSMCs to track their fate after injury in murine models of Ang II (angiotensin II)-induced dissecting AA. We also addressed the direct impact of autophagy on the response of VSMCs to AA dissection. Finally, we studied the relevance of these processes to human AAs. Here, we show that a subset of medial VSMCs undergoes clonal expansion and that VSMC outgrowths are observed in the adventitia and borders of the false channel during Ang II-induced development of dissecting AA. The clonally expanded VSMCs undergo phenotypic switching with downregulation of VSMC differentiation markers and upregulation of phagocytic markers, indicative of functional changes. In particular, autophagy and endoplasmic reticulum stress responses are activated in the injured VSMCs. Loss of autophagy in VSMCs through deletion of autophagy protein 5 gene ( Atg5) increases the susceptibility of VSMCs to death, enhances endoplasmic reticulum stress activation, and promotes IRE (inositol-requiring enzyme) 1α-dependent VSMC inflammation. These alterations culminate in increased severity of aortic disease and higher incidence of fatal AA dissection in mice with VSMC-restricted deletion of Atg5. We also report increased expression of autophagy and endoplasmic reticulum stress markers in VSMCs of human dissecting AAs. Conclusions- VSMCs undergo clonal expansion and phenotypic switching in Ang II-induced dissecting AAs in mice. We also identify a critical role for autophagy in regulating VSMC death and endoplasmic reticulum stress-dependent inflammation with important consequences for aortic wall homeostasis and repair.


Asunto(s)
Aneurisma de la Aorta/patología , Disección Aórtica/patología , Autofagia , Plasticidad de la Célula , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Adulto , Anciano , Disección Aórtica/inducido químicamente , Disección Aórtica/metabolismo , Angiotensina II , Animales , Aorta/metabolismo , Aorta/patología , Aneurisma de la Aorta/inducido químicamente , Aneurisma de la Aorta/metabolismo , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Linaje de la Célula , Células Cultivadas , Modelos Animales de Enfermedad , Endorribonucleasas/metabolismo , Femenino , Humanos , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Persona de Mediana Edad , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
15.
Nat Med ; 24(8): 1113-1120, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29942089

RESUMEN

The association between altered gut microbiota, intestinal permeability, inflammation and cardiometabolic diseases is becoming increasingly clear but remains poorly understood1,2. Indoleamine 2,3-dioxygenase is an enzyme induced in many types of immune cells, including macrophages in response to inflammatory stimuli, and catalyzes the degradation of tryptophan along the kynurenine pathway. Indoleamine 2,3-dioxygenase activity is better known for its suppression of effector T cell immunity and its activation of regulatory T cells3,4. However, high indoleamine 2,3-dioxygenase activity predicts worse cardiovascular outcome5-9 and may promote atherosclerosis and vascular inflammation6, suggesting a more complex role in chronic inflammatory settings. Indoleamine 2,3-dioxygenase activity is also increased in obesity10-13, yet its role in metabolic disease is still unexplored. Here, we show that obesity is associated with an increase of intestinal indoleamine 2,3-dioxygenase activity, which shifts tryptophan metabolism from indole derivative and interleukin-22 production toward kynurenine production. Indoleamine 2,3-dioxygenase deletion or inhibition improves insulin sensitivity, preserves the gut mucosal barrier, decreases endotoxemia and chronic inflammation, and regulates lipid metabolism in liver and adipose tissues. These beneficial effects are due to rewiring of tryptophan metabolism toward a microbiota-dependent production of interleukin-22 and are abrogated after treatment with a neutralizing anti-interleukin-22 antibody. In summary, we identify an unexpected function of indoleamine 2,3-dioxygenase in the fine tuning of intestinal tryptophan metabolism with major consequences on microbiota-dependent control of metabolic disease, which suggests indoleamine 2,3-dioxygenase as a potential therapeutic target.


Asunto(s)
Microbioma Gastrointestinal , Salud , Indolamina-Pirrol 2,3,-Dioxigenasa/deficiencia , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Animales , Diabetes Mellitus Tipo 2/metabolismo , Hígado Graso/sangre , Hígado Graso/patología , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/sangre , Inflamación/sangre , Inflamación/patología , Resistencia a la Insulina , Interleucinas/metabolismo , Intestinos/patología , Quinurenina/sangre , Quinurenina/metabolismo , Lipopolisacáridos/sangre , Masculino , Ratones Endogámicos C57BL , Obesidad/sangre , Obesidad/patología , Análisis de Componente Principal , Triptófano/sangre , Triptófano/metabolismo , Interleucina-22
16.
PLoS One ; 13(3): e0193737, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29494675

RESUMEN

AIMS: Abdominal aortic aneurysm (AAA) is an age-associated disease characterized by chronic inflammation, vascular cell apoptosis and metalloproteinase-mediated extracellular matrix degradation. Despite considerable progress in identifying targets involved in these processes, therapeutic approaches aiming to reduce aneurysm growth and rupture are still scarce. Indoleamine 2-3 dioxygenase 1 (IDO) is the first and rate-limiting enzyme involved in the conversion of tryptophan (Trp) into kynurenine (Kyn) pathway. In this study, we investigated the role of IDO in two different models of AAA in mice. METHODS AND RESULTS: Mice with deficiencies in both low density receptor-deficient (Ldlr-/-) and IDO (Ldlr-/-Ido1-/-) were generated by cross-breeding Ido1-/- mice with Ldlr-/-mice. To induce aneurysm, these mice were infused with angiotensin II (Ang II) (1000 ng/min/kg) and fed with high fat diet (HFD) during 28 days. AAAs were present in almost all Ldlr-/- infused with AngII, but only in 50% of Ldlr-/-Ido1-/- mice. Immunohistochemistry at an early time point (day 7) revealed no changes in macrophage and T lymphocyte infiltration within the vessel wall, but showed reduced apoptosis, as assessed by TUNEL assay, and increased α-actin staining within the media of Ldlr-/-Ido1-/- mice, suggesting enhanced survival of vascular smooth muscle cells (VSMCs) in the absence of IDO. In another model of elastase-induced AAA in C57Bl/6 mice, IDO deficiency had no effect on aneurysm formation. CONCLUSION: Our study showed that the knockout of IDO prevented VSMC apoptosis in AngII -treated Ldlr-/- mice fed with HFD, suggesting a detrimental role of IDO in AAA formation and thus would be an important target for the treatment of aneurysm.


Asunto(s)
Angiotensina II/efectos adversos , Aneurisma de la Aorta Abdominal/patología , Dieta Alta en Grasa/efectos adversos , Indolamina-Pirrol 2,3,-Dioxigenasa/deficiencia , Músculo Liso Vascular/citología , Receptores de LDL/deficiencia , Animales , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/genética , Apoptosis , Supervivencia Celular , Células Cultivadas , Modelos Animales de Enfermedad , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/patología , Masculino , Ratones , Ratones Noqueados , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/patología , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/patología
17.
Circ Res ; 122(6): 813-820, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29436389

RESUMEN

RATIONALE: Despite an established role for adaptive immune responses in atherosclerosis, the contribution of dendritic cells (DCs) and their various subsets is still poorly understood. OBJECTIVE: Here, we address the role of IRF8 (interferon regulatory factor 8)-dependent DCs (lymphoid CD8α+ and their developmentally related nonlymphoid CD103+ DCs) in the induction of proatherogenic immune responses during high fat feeding. METHODS AND RESULTS: Using a fate-mapping technique to track DCs originating from a DNGR1+ (dendritic cell natural killer lectin group receptor 1) precursor (Clec9a+/creRosa+/EYFP mice), we first show that YFPhiCD11chiMHCIIhi (major histocompatibility complex class II) DCs are present in the atherosclerotic aorta of low-density lipoprotein receptor-deficient (Ldlr-/-) mice and are CD11b-CD103+IRF8hi. Restricted deletion of IRF8 in DCs (Irf8flox/floxCd11cCre ) reduces the accumulation of CD11chiMHCIIhi DCs in the aorta without affecting CD11b+CD103- DCs or macrophages but completely abolishes the accumulation of aortic CD11b-CD103+ DCs. Lymphoid CD8α+ DCs are also deleted. This is associated with a significant reduction of aortic T-cell accumulation and a marked reduction of high-fat diet-induced systemic T-cell priming, activation, and differentiation toward T helper type 1 cells, T follicular helper cells, and regulatory T cells. As a consequence, B-cell activation and germinal center responses to high-fat diet are also markedly reduced. IRF8 deletion in DCs significantly reduces the development of atherosclerosis, predominantly in the aortic sinus, despite a modest increase in total plasma cholesterol levels. CONCLUSIONS: IRF8 expression in DCs plays a nonredundant role in the development of proatherogenic adaptive immunity.


Asunto(s)
Inmunidad Adaptativa , Aterosclerosis/inmunología , Células Dendríticas/inmunología , Factores Reguladores del Interferón/metabolismo , Animales , Aorta/citología , Aterosclerosis/etiología , Antígenos CD11/genética , Antígenos CD11/metabolismo , Células Cultivadas , Dieta Alta en Grasa/efectos adversos , Femenino , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/metabolismo , Factores Reguladores del Interferón/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Linfocitos T/inmunología
18.
Cardiovasc Res ; 114(1): 7-9, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29228116
19.
Arterioscler Thromb Vasc Biol ; 37(11): 2171-2181, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28912363

RESUMEN

OBJECTIVE: Current experimental models of abdominal aortic aneurysm (AAA) do not accurately reproduce the major features of human AAA. We hypothesized that blockade of TGFß (transforming growth factor-ß) activity-a guardian of vascular integrity and immune homeostasis-would impair vascular healing in models of nondissecting AAA and would lead to sustained aneurysmal growth until rupture. APPROACH AND RESULTS: Here, we test this hypothesis in the elastase-induced AAA model in mice. We analyze AAA development and progression using ultrasound in vivo, synchrotron-based ultrahigh resolution imaging ex vivo, and a combination of biological, histological, and flow cytometry-based cellular and molecular approaches in vitro. Systemic blockade of TGFß using a monoclonal antibody induces a transition from a self-contained aortic dilatation to a model of sustained aneurysmal growth, associated with the formation of an intraluminal thrombus. AAA growth is associated with wall disruption but no medial dissection and culminates in fatal transmural aortic wall rupture. TGFß blockade enhances leukocyte infiltration both in the aortic wall and the intraluminal thrombus and aggravates extracellular matrix degradation. Early blockade of IL-1ß or monocyte-dependent responses substantially limits AAA severity. However, blockade of IL-1ß after disease initiation has no effect on AAA progression to rupture. CONCLUSIONS: Endogenous TGFß activity is required for the healing of AAA. TGFß blockade may be harnessed to generate new models of AAA with better relevance to the human disease. We expect that the new models will improve our understanding of the pathophysiology of AAA and will be useful in the identification of new therapeutic targets.


Asunto(s)
Anticuerpos Monoclonales/toxicidad , Aorta Abdominal/efectos de los fármacos , Aneurisma de la Aorta Abdominal/inducido químicamente , Rotura de la Aorta/inducido químicamente , Elastasa Pancreática , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Remodelación Vascular/efectos de los fármacos , Animales , Aorta Abdominal/inmunología , Aorta Abdominal/metabolismo , Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/inmunología , Aneurisma de la Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/patología , Rotura de la Aorta/inmunología , Rotura de la Aorta/metabolismo , Rotura de la Aorta/patología , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Quimiotaxis de Leucocito/efectos de los fármacos , Dilatación Patológica , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Interleucina-1beta/metabolismo , Cinética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Sincrotrones , Trombosis/inducido químicamente , Trombosis/metabolismo , Trombosis/patología , Factor de Crecimiento Transformador beta/inmunología , Factor de Crecimiento Transformador beta/metabolismo , Ultrasonografía , Cicatrización de Heridas/efectos de los fármacos
20.
Nat Commun ; 8: 15781, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28589929

RESUMEN

Type-2 innate lymphoid cells (ILC2) are a prominent source of type II cytokines and are found constitutively at mucosal surfaces and in visceral adipose tissue. Despite their role in limiting obesity, how ILC2s respond to high fat feeding is poorly understood, and their direct influence on the development of atherosclerosis has not been explored. Here, we show that ILC2 are present in para-aortic adipose tissue and lymph nodes and display an inflammatory-like phenotype atypical of adipose resident ILC2. High fat feeding alters both the number of ILC2 and their type II cytokine production. Selective genetic ablation of ILC2 in Ldlr-/- mice accelerates the development of atherosclerosis, which is prevented by reconstitution with wild type but not Il5-/- or Il13-/- ILC2. We conclude that ILC2 represent a major innate cell source of IL-5 and IL-13 required for mounting atheroprotective immunity, which can be altered by high fat diet.


Asunto(s)
Aterosclerosis/patología , Linfocitos/patología , Tejido Adiposo Blanco/patología , Animales , Aorta/metabolismo , Aorta/patología , Aterosclerosis/etiología , Trasplante de Médula Ósea , Citocinas/metabolismo , Dieta Alta en Grasa/efectos adversos , Femenino , Interleucina-13/metabolismo , Interleucina-5/metabolismo , Linfocitos/metabolismo , Ratones Noqueados para ApoE , Ratones Mutantes , Placa Aterosclerótica/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...