Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 12(34): 38019-38030, 2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32687700

RESUMEN

We investigated the photocatalytic behavior of gold nanoparticles supported on CeO2-TiO2 nanostructured matrixes in the CO preferential oxidation in H2-rich stream (photo-CO-PROX), by modifying the electronic band structure of ceria through addition of titania and making it more suitable for interacting with free electrons excited in gold nanoparticles through surface plasmon resonance. CeO2 samples with different TiO2 concentrations (0-20 wt %) were prepared through a slow coprecipitation method in alkaline conditions. The synthetic route is surfactant-free and environmentally friendly. Au nanoparticles (<1.0 wt % loading) were deposited on the surface of the CeO2-TiO2 oxides by deposition-precipitation. A benchmarking sample was also considered, prepared by standard fast coprecipitation, to assess how a peculiar morphology can affect the photocatalytic behavior. The samples appeared organized in a hierarchical needle-like structure, with different morphologies depending on the Ti content and preparation method, with homogeneously distributed Au nanoparticles decorating the Ce-Ti mixed oxides. The morphology influences the preferential photooxidation of CO to CO2 in excess of H2 under simulated solar light irradiation at room temperature and atmospheric pressure. The Au/CeO2-TiO2 systems exhibit much higher activity compared to a benchmark sample with a non-organized structure. The most efficient sample exhibited CO conversions of 52.9 and 80.2%, and CO2 selectivities equal to 95.3 and 59.4%, in the dark and under simulated sunlight, respectively. A clear morphology-functionality correlation was found in our systematic analysis, with CO conversion maximized for a TiO2 content equal to 15 wt %. The outcomes of this study are significant advancements toward the development of an effective strategy for exploitation of hydrogen as a viable clean fuel in stationary, automotive, and portable power generators.

2.
Dalton Trans ; 49(13): 3946-3955, 2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-31958109

RESUMEN

In the present study a series of Au-transition metal oxides supported on a clay mineral such as sepiolite were tested in the preferential oxidation of CO in an excess of H2 under simulated solar light irradiation and in the absence of light, at 30 °C and atmospheric pressure. Transition metal oxides (ZnO, Fe2O3, NiO, MnO2, and Co3O4) were dispersed over the sepiolite surface where, subsequently, Au nanoparticles with an average particle size between 2 and 3 nm were successfully deposited-precipitated. The obtained photocatalysts were characterized by XRD, XRF, DRUV-Vis, N2 adsorption-desorption and HRTEM in order to evaluate the optical, structural and chemical properties of the prepared samples. Despite the low amount of gold (nominal 1.0 wt%), the catalysts exhibited an outstanding behavior under light irradiation, with reaction rates between 4.5 and 5.2 mmol COox gcat-1 h-1 for the Au-NiSep, Au-CoSep and Au-ZnSep samples. These photocatalysts exhibited a high dispersion of the respective transition metal oxides over the sepiolite support and the presence of low-coordinated hemispherical gold nanoparticles. The superior photocatalytic efficiency of these samples was ascribed to the reduction of the electron-hole pair recombination of photogenerated charge carriers by the excitation of the localized surface plasmon resonance of the Au nanoparticles. The BET surface area and the gold particle size seemed to be relevant factors affecting the catalytic performance.

3.
Materials (Basel) ; 11(7)2018 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-30011796

RESUMEN

In this work, SBA-15 silica and silica-titania have been used as supports for photocatalysts based on AuCu alloy (Au:Cu = 1) to be used in the preferential oxidation of CO (CO-PROX) in excess of hydrogen at room temperature and atmospheric pressure both in the dark and under simulated solar light irradiation. To study their textural, structural, chemical and optical properties, the samples were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), adsorption-desorption of N2 at -196 °C, 13C and 29Si solid state nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS) and diffuse reflectance ultraviolet-visible (DRUV-vis) spectroscopy. Titanium was present mainly in the form of titania aggregates, but also as small particles interacting with the SBA support. In both catalysts, the metal alloy nanoparticles displayed an average size of 4 nm as demonstrated by TEM measurements. AuCu/Ti-SBA turned out to be photoactive and selective in the photo-CO-PROX reaction showing the highest activity, with conversion and selectivity towards CO2 of 80%, due both to the presence of titania incorporated in SBA-15 and to the synergistic effect of Cu when alloyed with Au.

4.
Materials (Basel) ; 11(6)2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-29799498

RESUMEN

The photocatalytic degradation of methylene blue (MB) dye has been performed under UV irradiation in aqueous suspension, employing photocatalysts based on Au (1.5 wt %) and AuCu (Au/Cu = 1, 2.0 wt %), and supported on SBA-15-ordered mesoporous silica, with and without titania (Si/Ti = 3), in order to evaluate the versatility of this mesoporous support in this type of reaction of great impact from the environmental point of view. Samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption at -196 °C, and X-ray photoelectron spectroscopy (XPS), so as to study their structural, optical, and chemical properties. All the prepared catalysts were found to be active in the test reaction. The bimetallic AuCu-based catalysts attained very high MB degradation values, in particular AuCu/SBA-15 titania-silica sample reached 100% of dye oxidation after the monitored reaction period (120 min).

5.
J Colloid Interface Sci ; 375(1): 112-7, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22425254

RESUMEN

Here we describe the step-wise grafting of the fluorophore dansyl chloride on the interlayer aluminol groups of kaolinite. The modified clay was characterized by powder RD, TGA, FT-IR and (27)Al, (19)Si, (13)C MAS-NMR, which confirmed the achievement of the clay functionalization. The photophysical properties of the resulting nanohybrid material were evaluated by photoluminescence excitation and emission measurements.

6.
J Colloid Interface Sci ; 350(2): 435-42, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20655539

RESUMEN

Nanostructured Au/Al(2)O(3)-CeO(2) catalysts with a low content of precious metal (0.9% wt.) were prepared immobilizing two different stabilized Au sols on a high surface area Al(2)O(3)-CeO(2) mixed oxide with a uniform pore size distribution, synthesized by a one-pot methodology. The samples were characterized by elemental analysis, N(2) physisorption, XRPD, TEM and (27)Al-MAS NMR techniques. The catalytic activity of the two samples in the preferential oxidation of CO in excess of H(2) (CO-PROX) was comparatively evaluated in the 35-110 degrees C temperature range. The Au-THPS/AlCe20 sample, prepared immobilizing a sol obtained reducing an aqueous solution of gold tetrachloroaurate salt with bis[tetrakis(hydroxymethyl)phosphonium sulfate], resulted very active and selective at low temperatures and its catalytic activity was correlated with the structural characteristics of the metal particles and of the ordered mesoporous support.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...