Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(30): 74877-74888, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37209329

RESUMEN

Axial DC magnetic field-assisted multi-capillary underwater air bubble discharge plasma jet has been used to study the productions of reactive oxygen species. Analyses of optical emission data revealed that the rotational (Tr) and vibrational temperatures (Tv) of plasma species slightly increased with magnetic field strength. The electron temperature (Te) and density (ne) increased almost linearly with magnetic field strength. Te increased from 0.53 to 0.59 eV, whereas ne increased from 1.03 × 1015 cm-3 to 1.33 × 1015 cm-3 for B = 0 to B = 374 mT, respectively. Analytical results from the plasma treated water provided that the electrical conductivity (EC), oxidative reduction potential (ORP), and the concentrations of O3 and H2 O2 enhanced from 155 to 229 µS cm-1, 141 to 17 mV, 1.34 to 1.92 mg L-1, and 5.61 to 10.92 mg L-1 due to the influence of axial DC magnetic field, while [Formula: see text] reduced from 5.10 to 3.93 for 30 min treatment of water with B = 0 and B = 374 mT, respectively. The model wastewater prepared with Remazol brilliant blue textile dye and the plasma treated wastewater studied by optical absorption spectrometer, Fourier transform infrared spectrometer, and gas chromatography mass spectrometer. The results show that the decolorization efficiency increased ~ 20% after 5 min treatment for the maximum B = 374 mT with respect to zero-magnetic field and, power consumption, and electrical energy cost reduced ~ 6.3% and ~ 4.5%, respectively, due to the maximum assisted axial DC magnetic field strength of 374 mT.


Asunto(s)
Aguas Residuales , Agua , Textiles , Colorantes/metabolismo , Industria Textil
2.
Heliyon ; 7(3): e06458, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33768173

RESUMEN

In this present study conducted with the LFGD (Low-Frequency Glow Discharge) (Ar + O2) plasma treated maize seeds, to inspect the effect on seed surface modifications, seed germination, growth, development, productivity and nutritional compositions of maize plants. This study reported that LFGD (Ar + O2) plasma treated maize seeds have a potential effect to change its smooth seed surfaces and, it becomes rougher. It also enhances the seed germination rate up to (15.88%), which might help to increase the shoot length (33.42%), root length (10.67%), stem diameter (13.37%), total chlorophyll content (46.93%), total soluble protein (52.48%), total soluble phenol (21.68%) and sugar (1.62%) concentrations in respect controls of our experimental plants. For this reason, the acceptable treatment duration for maize seeds were 30sec, 60sec, 90sec and 120sec. After treatment, the plants exhibited a significant increase in CAT, SOD, APX and GR activities in the leaves and roots, and also significantly changes in H2O2 (208.33 ± 5.87µ molg-1 FW) in the leaves and (61.13 ± 1.72µ molg-1 FW) in the roots, NO was (369.24 ± 213.19µ molg-1FW) and (1094.23 ± 135.44µ molg-1FW) in the leaves and roots. LFGD plasma treatment also contributed to enhancement of productivity (1.27%), nutritional (moisture, ash, fat, and crude fiber) compositions, and iron and zinc micro-nutrition concentrations of maize. From this research, LFGD (Ar + O2) plasma treatment showed a potential impact on the maize cultivation system, which is very effective tools and both in nationally and internationally alter the conventional cultivation system of maize. Because it promotes seed surface modification, improved germination rate, shoot length, root length, chlorophyll content, some of the growths related enzymatic activity, nutrient composition, iron, and zinc micro-nutrients and the productivity of maize.

3.
Arch Biochem Biophys ; 698: 108726, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33326801

RESUMEN

The study investigates the effect of LPDBD (Low Pressure Dielectric Barrier Discharge) (Ar + Air) plasma on seed germination, seedling growth and antioxidant enzyme activity of rice. Rice seeds were treated with LPDBD (Ar + Air) plasma for 2min, 4min, 6min, 8min and 10min. Seed germination rate, seedling growth, total chlorophyll content, enzymatic activity, total soluble sugar and protein concentration were increased in plants grown from the LPDBD (Ar + Air) plasma treated seeds. It was observed that the sprouting of seeds and the growth of seedlings of rice depends on the feed gases used to generate plasma and plasma processing time. In the case of plantlets germinated from the plasma-treated seeds of rice, the H2O2 level was increased significantly both in leaves and roots for 6min, 8min and 10min treatment respectively. No significant change was observed in Nitric Oxide (NO) concentration in seed, leaf, or root of plants grown from LPDBD (Ar + Air) plasma-treated seeds. The amount of total soluble sugar and protein increased significantly in the case of 2min, 4min, 6min, 8min and 10min seed treatment. Although plants exhibited no significant increase in APX activities, but a significant increase of CAT and SOD activity in the leaf and root was found. This study reveals that LPDBD (Ar + Air) plasma is involved in the elevation of ROS species in leaf and root of rice plants which is tightly regulated by the upregulation of CAT activity that ultimately enhances the seed germination and growth of rice plantlets.


Asunto(s)
Catalasa/metabolismo , Oryza/metabolismo , Gases em Plasma/farmacología , Plantones/metabolismo , Semillas/metabolismo , Superóxido Dismutasa/metabolismo , Aire , Argón/química , Germinación/efectos de los fármacos , Germinación/fisiología , Oryza/efectos de los fármacos , Oryza/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo
4.
PLoS One ; 14(4): e0214509, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30933989

RESUMEN

Cadmium (Cd) contamination in plant-derived food is a big concern. This study examines whether and how Ar/O2 and Ar/Air plasma techniques lead to Cd detoxification in wheat. Treatment with Ar/O2 and Ar/Air changed the seed surface and decreased the pH of seeds as well as the cultivation media. Generally, plants subjected to Cd treatment from seeds treated with Ar/O2and Ar/Air plasma showed considerable progress in morphology and total chlorophyll synthesis compared to Cd-treated wheat, suggesting that plasma technology is effective for Cd detoxification. Furthermore, Ar/O2 and Ar/Air plasma treated plants showed a significant decrease in root and shoot Cd concentration, which is consistent with the reduced expression of Cd transporters in the root (TaLCT1 and TaHMA2) compared with the plants not treated with plasma in response to Cd stress. This Cd inhibition is possibly accomplished by the decrease of pH reducing the bioavailability of Cd in the rhizosphere. These observations are in line with maintenance of total soluble protein along with reduced electrolyte leakage and cell death (%) in root and shoot due to Ar/O2 and Ar/Air treatments. Further, Cd-induced elevated H2O2 or oxidative damage in tissues was mainly diminished through the upregulation of antioxidant enzymes (SOD and CAT) and their corresponding genes (TaSOD and TaCAT) induced by Ar/O2 and Ar/Air plasma. Grafting results suggest that root originating nitric oxide signal possibly drives the mechanisms of Cd detoxification due to plasma treatment in wheat. These findings provide a novel and eco-friendly use of plasma technology for the mitigation of Cd toxicity in wheat plants.


Asunto(s)
Cadmio/toxicidad , Triticum/efectos de los fármacos , Triticum/metabolismo , Aire , Antioxidantes/química , Argón/química , Ascorbato Peroxidasas/química , Catalasa/química , Muerte Celular , Clorofila/química , Medios de Cultivo , Electrólitos , Peróxido de Hidrógeno/química , Concentración de Iones de Hidrógeno , Óxido Nítrico/química , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Rizosfera , Semillas/efectos de los fármacos , Transducción de Señal , Superóxido Dismutasa/química
5.
Sci Rep ; 8(1): 10498, 2018 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-30002439

RESUMEN

This study investigates the effect and mechanisms of low pressure dielectric barrier discharge (LPDBD) produced with Ar/O2 and Ar/Air technique causing biological stimulation leading to improved germination and growth in wheat. Both plasma treatments caused rougher and chapped seed surface along with noticeable improvement in seed germination in wheat. Beside this, seed H2O2 concentration significantly increased compared to controls subjected to Ar/O2 and Ar/Air while this phenomenon was more pronounced due to Ar/Air plasma. Analysis of plants grown from the plasma treated seeds showed significant improvement in shoot characteristics, iron concentration, total soluble protein and sugar concentration in comparison with the controls more efficiently due to Ar/O2 plasma than that of Ar/Air. Further, none of the plasma treatments caused membrane damage or cell death in root and shoot of wheat. Interestingly, Ar/O2 treated plants showed a significant increase (2-fold) of H2O2 compared to controls in both root and shoot, while Ar/Air plasma caused no changes in H2O2. This phenomenon was supported by the biochemical and molecular evidence of SOD, APX and CAT in wheat plants. Plants derived from Ar/O2 treated seeds demonstrated a significant increase in SOD activity and TaSOD expression in roots of wheat, while APX and CAT activities along with TaCAT and TaAPX expression showed no significant changes. In contrast, Ar/Air plasma caused a significant increase only in APX activity in the shoot. This suggests that Ar/O2 plasma caused a slight induction in H2O2 accumulation without triggering the H2O2 scavengers (APX and CAT) and thus, efficiency affect growth and development in wheat plants. Further, grafting of control and Ar/O2 treated plants showed a significant increase in shoot biomass and H2O2 concentration in grafts having Ar/O2 rootstock regardless of the type scion attached to it. It indicates that signal driving Ar/O2 plasma mediated growth improvement in wheat is possibly originated in roots. Taken together, this paper delivers new insight into the mechanistic basis for growth improvement by LPDBD technique.


Asunto(s)
Argón/química , Producción de Cultivos/métodos , Electricidad , Gases em Plasma/química , Triticum/crecimiento & desarrollo , Biomasa , Germinación/fisiología , Peróxido de Hidrógeno/metabolismo , Oxígeno/química , Plantones/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Transducción de Señal/fisiología , Triticum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA