Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38711225

RESUMEN

Children with developmental and epileptic encephalopathies often present with co-occurring dyskinesias. Pathogenic variants in ARX cause a pleomorphic syndrome that includes infantile epilepsy with a variety of movement disorders ranging from focal hand dystonia to generalized dystonia with frequent status dystonicus. In this report, we present three patients with severe movement disorders as part of ARX-associated epilepsy-dyskinesia syndrome, including a patient with a novel pathogenic missense variant (p.R371G). These cases illustrate diagnostic and management challenges of ARX-related disorder and shed light on broader challenges concerning epilepsy-dyskinesia syndromes.

2.
Mov Disord ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619077

RESUMEN

Status dystonicus is the most severe form of dystonia with life-threatening complications if not treated promptly. We present consensus recommendations for the initial management of acutely worsening dystonia (including pre-status dystonicus and status dystonicus), as well as refractory status dystonicus in children. This guideline provides a stepwise approach to assessment, triage, interdisciplinary treatment, and monitoring of status dystonicus. The clinical pathways aim to: (1) facilitate timely recognition/triage of worsening dystonia, (2) standardize supportive and dystonia-directed therapies, (3) provide structure for interdisciplinary cooperation, (4) integrate advances in genomics and neuromodulation, (5) enable multicenter quality improvement and research, and (6) improve outcomes. © 2024 International Parkinson and Movement Disorder Society.

3.
Antibodies (Basel) ; 12(3)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37606437

RESUMEN

Rapidly producing drug-like antibody therapeutics for lead molecule discovery and candidate optimization is typically accomplished by large-scale transient gene expression technologies (TGE) with cultivated mammalian cells. The TGE methodologies have been extensively developed over the past three decades, yet produce significantly lower yields than the stable cell line approach, facing the technical challenge of achieving universal high expression titers for a broad range of antibodies and therapeutics modalities. In this study, we explored various parameters for antibody production in the TGE cell host Expi293FTM and ExpiCHO-STM with the transfection reagents ExpiFectamineTM and polyethylenimine. We discovered that there are significant differences between Expi293FTM and ExpiCHO-STM cells with regards to DNA complex formation time and ratio, complex formation buffers, DNA complex uptake trafficking routes, responses to dimethyl sulfoxide and cell cycle inhibitors, as well as light-chain isotype expression preferences. This investigation mechanistically dissected the TGE processes and provided a new direction for future transient antibody production optimization.

4.
Mov Disord ; 38(9): 1742-1750, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37482941

RESUMEN

BACKGROUND: Adaptor protein complex 4-associated hereditary spastic paraplegia (AP-4-HSP) is caused by pathogenic biallelic variants in AP4B1, AP4M1, AP4E1, and AP4S1. OBJECTIVE: The aim was to explore blood markers of neuroaxonal damage in AP-4-HSP. METHODS: Plasma neurofilament light chain (pNfL) and glial fibrillary acidic protein (GFAP) levels were measured in samples from patients and age- and sex-matched controls (NfL: n = 46 vs. n = 46; GFAP: n = 14 vs. n = 21) using single-molecule array assays. Patients' phenotypes were systematically assessed using the AP-4-HSP natural history study questionnaires, the Spastic Paraplegia Rating Scale, and the SPATAX disability score. RESULTS: pNfL levels increased in AP-4-HSP patients, allowing differentiation from controls (Mann-Whitney U test: P = 3.0e-10; area under the curve = 0.87 with a 95% confidence interval of 0.80-0.94). Phenotypic cluster analyses revealed a subgroup of individuals with severe generalized-onset seizures and developmental stagnation, who showed differentially higher pNfL levels (Mann-Whitney U test between two identified clusters: P = 2.5e-6). Plasma GFAP levels were unchanged in patients with AP-4-HSP. CONCLUSIONS: pNfL is a potential disease marker in AP-4-HSP and can help differentiate between phenotypic subgroups. © 2023 International Parkinson and Movement Disorder Society.


Asunto(s)
Complejo 4 de Proteína Adaptadora , Paraplejía Espástica Hereditaria , Humanos , Complejo 4 de Proteína Adaptadora/genética , Paraplejía Espástica Hereditaria/genética , Filamentos Intermedios/metabolismo , Fenotipo , Mutación
6.
J Biotechnol ; 360: 79-91, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36341973

RESUMEN

This study has employed mammalian transient expression systems to generate afucosylated antibodies and antibody Fc mutants for rapid candidate screening in discovery and early development. While chemical treatment with the fucose analogue 2-fluoro-peracetyl-fucose during transient expression only partially produced antibodies with afucosylated N-glycans, the genetic inactivation of the FUT8 gene in ExpiCHO-S™ by CRISPR/Cas9 enabled the transient production of fully afucosylated antibodies. Human IgG1 and murine IgG2a generated by the ExpiCHOfut8KO cell line possessed a 8-to-11-fold enhanced FcγRIIIa binding activity in comparison with those produced by ExpiCHO-S™. The Fc mutant S239D/S298A/I332E produced by ExpiCHO-S™ had an approximate 2-fold higher FcγRIIIa affinity than that of the afucosylated wildtype molecule, although it displayed significantly lower thermal-stability. When the Fc mutant was produced in the ExpiCHOfut8KO cell line, the resulting afucosylated Fc mutant antibody had an additional approximate 6-fold increase in FcγRIIIa binding affinity. This synergistic effect between afucosylation and the Fc mutations was further verified by a natural killer (NK) cell activation assay. Together, these results have not only established an efficient large-scale transient CHO system for rapid production of afucosylated antibodies, but also confirmed a cooperative impact between afucosylation and Fc mutations on FcγRIIIa binding and NK cell activation.


Asunto(s)
Inmunoglobulina G , Células Asesinas Naturales , Humanos , Animales , Ratones , Inmunoglobulina G/genética , Mamíferos
7.
Antib Ther ; 5(4): 258-267, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36299415

RESUMEN

Background: Interleukin (IL)25 has been implicated in tissue homeostasis at barrier surfaces and the initiation of type two inflammatory signaling in response to infection and cell injury across multiple organs. We sought to discover and engineer a high affinity neutralizing antibody and evaluate the antibody functional activity in vitro and in vivo. Methods: In this study, we generated a novel anti-IL25 antibody (22C7) and investigated the antibody's therapeutic potential for targeting IL25 in inflammation. Results: A novel anti-IL25 antibody (22C7) was generated with equivalent in vitro affinity and potency against the human and mouse orthologs of the cytokine. This translated into in vivo potency in an IL25-induced air pouch model where 22C7 inhibited the recruitment of monocytes, macrophages, neutrophils and eosinophils. Furthermore, 22C7 significantly reduced ear swelling, acanthosis and disease severity in the Aldara mouse model of psoriasiform skin inflammation. Given the therapeutic potential of IL25 targeting in inflammatory conditions, 22C7 was further engineered to generate a highly developable, fully human antibody while maintaining the affinity and potency of the parental molecule. Conclusions: The generation of 22C7, an anti-IL25 antibody with efficacy in a preclinical model of skin inflammation, raises the therapeutic potential for 22C7 use in the spectrum of IL25-mediated diseases.

8.
Nat Commun ; 12(1): 6842, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34824238

RESUMEN

Bacteria from the orders Bacillales and Clostridiales differentiate into stress-resistant spores that can remain dormant for years, yet rapidly germinate upon nutrient sensing. How spores monitor nutrients is poorly understood but in most cases requires putative membrane receptors. The prototypical receptor from Bacillus subtilis consists of three proteins (GerAA, GerAB, GerAC) required for germination in response to L-alanine. GerAB belongs to the Amino Acid-Polyamine-Organocation superfamily of transporters. Using evolutionary co-variation analysis, we provide evidence that GerAB adopts a structure similar to an L-alanine transporter from this superfamily. We show that mutations in gerAB predicted to disrupt the ligand-binding pocket impair germination, while mutations predicted to function in L-alanine recognition enable spores to respond to L-leucine or L-serine. Finally, substitutions of bulkier residues at these positions cause constitutive germination. These data suggest that GerAB is the L-alanine sensor and that B subunits in this broadly conserved family function in nutrient detection.


Asunto(s)
Aminoácidos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Esporas Bacterianas/fisiología , Alanina/química , Alanina/metabolismo , Aminoácidos/química , Bacillus subtilis/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Regulación Bacteriana de la Expresión Génica , Ligandos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Modelos Moleculares , Mutación
9.
Sci Rep ; 11(1): 8921, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33903632

RESUMEN

GDF15 is a distant TGF-ß family member that induces anorexia and weight loss. Due to its function, GDF15 has attracted attention as a potential therapeutic for the treatment of obesity and its associated metabolic diseases. However, the pharmacokinetic and physicochemical properties of GDF15 present several challenges for its development as a therapeutic, including a short half-life, high aggregation propensity, and protease susceptibility in serum. Here, we report the design, characterization and optimization of GDF15 in an Fc-fusion protein format with improved therapeutic properties. Using a structure-based engineering approach, we combined knob-into-hole Fc technology and N-linked glycosylation site mutagenesis for half-life extension, improved solubility and protease resistance. In addition, we identified a set of mutations at the receptor binding site of GDF15 that show increased GFRAL binding affinity and led to significant half-life extension. We also identified a single point mutation that increases p-ERK signaling activity and results in improved weight loss efficacy in vivo. Taken together, our findings allowed us to develop GDF15 in a new therapeutic format that demonstrates better efficacy and potential for improved manufacturability.


Asunto(s)
Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor 15 de Diferenciación de Crecimiento/farmacología , Fragmentos Fc de Inmunoglobulinas/farmacología , Proteínas Recombinantes de Fusión/farmacología , Pérdida de Peso/efectos de los fármacos , Animales , Células CHO , Cricetulus , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Glicosilación , Humanos , Ratones , Mutación Puntual , Ingeniería de Proteínas
10.
Biotechnol Prog ; 37(4): e3158, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33891804

RESUMEN

Site specific integration (SSI) expression systems offer robust means of generating highly productive and stable cell lines for traditional monoclonal antibodies. As complex modalities such as antibody-like molecules comprised of greater than two peptides become more prevalent, greater emphasis needs to be placed on the ability to produce appreciable quantities of the correct product of interest (POI). The ability to screen several transcript stoichiometries could play a large role in ensuring high amounts of the correct POI. Here we illustrate implementation of an SSI expression system with a single site of integration for development and production of a multi-chain, bi-specific molecule. A SSI vector with a single copy of all of the genes of interest was initially selected for stable Chinese hamster ovary transfection. While the resulting transfection pools generated low levels of the desired heterodimer, utilizing an intensive clone screen strategy, we were able to identify clones having significantly higher levels of POI. In-depth genotypic characterization of clones having the desirable phenotype revealed that a duplication of the light chain within the landing pad was responsible for producing the intended molecule. Retrospective transfection pool analysis using a vector configuration mimicking the transgene configuration found in the clones, as well as other vector configurations, yielded more favorable results with respect to % POI. Overall, the study demonstrated that despite the theoretical static nature of the SSI expression system, enough heterogeneity existed to yield clones having significantly different transgene phenotypes/genotypes and support production of a complex multi-chain molecule.


Asunto(s)
Cricetulus , Animales , Células CHO , Cricetinae , Proteínas Recombinantes/genética , Estudios Retrospectivos , Transfección , Transgenes
11.
MAbs ; 13(1): 1850395, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33459147

RESUMEN

We report here the discovery and optimization of a novel T cell retargeting anti-GUCY2C x anti-CD3ε bispecific antibody for the treatment of solid tumors. Using a combination of hybridoma, phage display and rational design protein engineering, we have developed a fully humanized and manufacturable CD3 bispecific antibody that demonstrates favorable pharmacokinetic properties and potent in vivo efficacy. Anti-GUCY2C and anti-CD3ε antibodies derived from mouse hybridomas were first humanized into well-behaved human variable region frameworks with full retention of binding and T-cell mediated cytotoxic activity. To address potential manufacturability concerns, multiple approaches were taken in parallel to optimize and de-risk the two antibody variable regions. These approaches included structure-guided rational mutagenesis and phage display-based optimization, focusing on improving stability, reducing polyreactivity and self-association potential, removing chemical liabilities and proteolytic cleavage sites, and de-risking immunogenicity. Employing rapid library construction methods as well as automated phage display and high-throughput protein production workflows enabled efficient generation of an optimized bispecific antibody with desirable manufacturability properties, high stability, and low nonspecific binding. Proteolytic cleavage and deamidation in complementarity-determining regions were also successfully addressed. Collectively, these improvements translated to a molecule with potent single-agent in vivo efficacy in a tumor cell line adoptive transfer model and a cynomolgus monkey pharmacokinetic profile (half-life>4.5 days) suitable for clinical development. Clinical evaluation of PF-07062119 is ongoing.


Asunto(s)
Anticuerpos Biespecíficos/inmunología , Complejo CD3/inmunología , Inmunoterapia Adoptiva/métodos , Neoplasias/terapia , Receptores de Enterotoxina/inmunología , Animales , Anticuerpos Biespecíficos/farmacocinética , Anticuerpos Biespecíficos/uso terapéutico , Línea Celular Tumoral , Femenino , Humanos , Hibridomas , Macaca fascicularis/inmunología , Macaca fascicularis/metabolismo , Ratones Endogámicos BALB C , Neoplasias/inmunología , Neoplasias/metabolismo , Ingeniería de Proteínas/métodos , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/farmacocinética , Anticuerpos de Cadena Única/uso terapéutico , Linfocitos T/inmunología , Linfocitos T/metabolismo
12.
PLoS One ; 15(5): e0232713, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32379792

RESUMEN

For an antibody to be a successful therapeutic many competing factors require optimization, including binding affinity, biophysical characteristics, and immunogenicity risk. Additional constraints may arise from the need to formulate antibodies at high concentrations (>150 mg/ml) to enable subcutaneous dosing with reasonable volume (ideally <1.0 mL). Unfortunately, antibodies at high concentrations may exhibit high viscosities that place impractical constraints (such as multiple injections or large needle diameters) on delivery and impede efficient manufacturing. Here we describe the optimization of an anti-PDGF-BB antibody to reduce viscosity, enabling an increase in the formulated concentration from 80 mg/ml to greater than 160 mg/ml, while maintaining the binding affinity. We performed two rounds of structure guided rational design to optimize the surface electrostatic properties. Analysis of this set demonstrated that a net-positive charge change, and disruption of negative charge patches were associated with decreased viscosity, but the effect was greatly dependent on the local surface environment. Our work here provides a comprehensive study exploring a wide sampling of charge-changes in the Fv and CDR regions along with targeting multiple negative charge patches. In total, we generated viscosity measurements for 40 unique antibody variants with full sequence information which provides a significantly larger and more complete dataset than has previously been reported.


Asunto(s)
Anticuerpos Monoclonales/química , Inmunoglobulina G/química , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Becaplermina/inmunología , Diseño Asistido por Computadora , Humanos , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Modelos Moleculares , Mutación , Conformación Proteica , Propiedades de Superficie , Viscosidad
13.
Cell Rep ; 30(8): 2758-2775.e6, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32101750

RESUMEN

Nuclear factor κB (NF-κB) RelA is the potent transcriptional activator of inflammatory response genes. We stringently defined a list of direct RelA target genes by integrating physical (chromatin immunoprecipitation sequencing [ChIP-seq]) and functional (RNA sequencing [RNA-seq] in knockouts) datasets. We then dissected each gene's regulatory strategy by testing RelA variants in a primary-cell genetic-complementation assay. All endogenous target genes require RelA to make DNA-base-specific contacts, and none are activatable by the DNA binding domain alone. However, endogenous target genes differ widely in how they employ the two transactivation domains. Through model-aided analysis of the dynamic time-course data, we reveal the gene-specific synergy and redundancy of TA1 and TA2. Given that post-translational modifications control TA1 activity and intrinsic affinity for coactivators determines TA2 activity, the differential TA logics suggests context-dependent versus context-independent control of endogenous RelA-target genes. Although some inflammatory initiators appear to require co-stimulatory TA1 activation, inflammatory resolvers are a part of the NF-κB RelA core response.


Asunto(s)
Inflamación/genética , Factor de Transcripción ReIA/metabolismo , Activación Transcripcional/genética , Animales , Secuencia de Bases , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Lógica , Ratones Endogámicos C57BL , Modelos Biológicos , Dominios Proteicos , Factor de Necrosis Tumoral alfa
14.
Biotechnol Prog ; 35(1): e2724, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30299005

RESUMEN

Large-scale transient expression in mammalian cells is a rapid protein production technology often used to shorten overall timelines for biotherapeutics drug discovery. In this study we demonstrate transient expression in a Chinese hamster ovary (CHO) host (ExpiCHO-S™) cell line capable of achieving high recombinant antibody expression titers, comparable to levels obtained using human embryonic kidney (HEK) 293 cells. For some antibodies, ExpiCHO-S™ cells generated protein materials with better titers and improved protein quality characteristics (i.e., less aggregation) than those from HEK293. Green fluorescent protein imaging data indicated that ExpiCHO-S™ displayed a delayed but prolonged transient protein expression process compared to HEK293. When therapeutic glycoproteins containing non-Fc N-linked glycans were expressed in transient ExpiCHO-S™, the glycan pattern was unexpectedly found to have few sialylated N-glycans, in contrast to glycans produced within a stable CHO expression system. To improve N-glycan sialylation in transient ExpiCHO-S™, we co-transfected galactosyltransferase and sialyltransferase genes along with the target genes, as well as supplemented the culture medium with glycan precursors. The authors have demonstrated that co-transfection of glycosyltransferases combined with medium addition of galactose and uridine led to increased sialylation content of N-glycans during transient ExpiCHO-S™ expression. These results have provided a scientific basis for developing a future transient CHO system with N-glycan compositions that are similar to those profiles obtained from stable CHO protein production systems. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2724, 2019.


Asunto(s)
Formación de Anticuerpos/fisiología , Animales , Células CHO , Cricetinae , Cricetulus , Glicosilación , Células HEK293 , Humanos , Polisacáridos/metabolismo
15.
Sci Rep ; 8(1): 4241, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29523796

RESUMEN

Pharmacological administration of FGF21 analogues has shown robust body weight reduction and lipid profile improvement in both dysmetabolic animal models and metabolic disease patients. Here we report the design, optimization, and characterization of a long acting glyco-variant of FGF21. Using a combination of N-glycan engineering for enhanced protease resistance and improved solubility, Fc fusion for further half-life extension, and a single point mutation for improving manufacturability in Chinese Hamster Ovary cells, we created a novel FGF21 analogue, Fc-FGF21[R19V][N171] or PF-06645849, with substantially improved solubility and stability profile that is compatible with subcutaneous (SC) administration. In particular, it showed a low systemic clearance (0.243 mL/hr/kg) and long terminal half-life (~200 hours for intact protein) in cynomolgus monkeys that approaches those of monoclonal antibodies. Furthermore, the superior PK properties translated into robust improvement in glucose tolerance and the effects lasted 14 days post single SC dose in ob/ob mice. PF-06645849 also caused greater body weight loss in DIO mice at lower and less frequent SC doses, compared to previous FGF21 analogue PF-05231023. In summary, the overall PK/PD and pharmaceutical profile of PF-06645849 offers great potential for development as weekly to twice-monthly SC administered therapeutic for chronic treatment of metabolic diseases.


Asunto(s)
Factores de Crecimiento de Fibroblastos/farmacocinética , Animales , Células CHO , Cricetinae , Cricetulus , Factores de Crecimiento de Fibroblastos/administración & dosificación , Factores de Crecimiento de Fibroblastos/química , Glicosilación , Células HEK293 , Humanos , Inyecciones Subcutáneas , Macaca fascicularis , Tasa de Depuración Metabólica , Ratones , Estabilidad Proteica , Proteolisis , Distribución Tisular
16.
MAbs ; 10(2): 244-255, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29271699

RESUMEN

Implementation of in vitro assays that correlate with in vivo human pharmacokinetics (PK) would provide desirable preclinical tools for the early selection of therapeutic monoclonal antibody (mAb) candidates with minimal non-target-related PK risk. Use of these tools minimizes the likelihood that mAbs with unfavorable PK would be advanced into costly preclinical and clinical development. In total, 42 mAbs varying in isotype and soluble versus membrane targets were tested in in vitro and in vivo studies. MAb physicochemical properties were assessed by measuring non-specific interactions (DNA- and insulin-binding ELISA), self-association (affinity-capture self-interaction nanoparticle spectroscopy) and binding to matrix-immobilized human FcRn (surface plasmon resonance and column chromatography). The range of scores obtained from each in vitro assay trended well with in vivo clearance (CL) using both human FcRn transgenic (Tg32) mouse allometrically projected human CL and observed human CL, where mAbs with high in vitro scores resulted in rapid CL in vivo. Establishing a threshold value for mAb CL in human of 0.32 mL/hr/kg enabled refinement of thresholds for each in vitro assay parameter, and using a combinatorial triage approach enabled the successful differentiation of mAbs at high risk for rapid CL (unfavorable PK) from those with low risk (favorable PK), which allowed mAbs requiring further characterization to be identified. Correlating in vitro parameters with in vivo human CL resulted in a set of in vitro tools for use in early testing that would enable selection of mAbs with the greatest likelihood of success in the clinic, allowing costly late-stage failures related to an inadequate exposure profile, toxicity or lack of efficacy to be avoided.


Asunto(s)
Anticuerpos Monoclonales/farmacocinética , Descubrimiento de Drogas/métodos , Técnicas In Vitro , Modelos Animales , Animales , Humanos , Ratones , Ratones Transgénicos
17.
Med Leg J ; 85(3): 145-147, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28849697

RESUMEN

The common law's development of the doctrine of informed consent has progressively imposed broader obligations on surgeons to provide patients with information about the surgical and alternative treatment choices available. Prognosis is critical because the patient cannot provide informed consent without information about the likely evolution of the physiological or pathological processes involved in the surgery under consideration. But does the duty of care that a surgeon owes a patient require a precise prognosis to be given in every case? A recent decision of the Court of Appeal considers that question.


Asunto(s)
Implantación de Mama/normas , Responsabilidad Legal , Pronóstico , Cirugía Plástica/legislación & jurisprudencia , Adulto , Implantación de Mama/legislación & jurisprudencia , Femenino , Humanos , Consentimiento Informado/ética , Cirugía Plástica/normas , Incertidumbre
18.
AAPS J ; 19(4): 1123-1135, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28439809

RESUMEN

As the antibody drug conjugate (ADC) community continues to shift towards site-specific conjugation technology, there is a growing need to understand how the site of conjugation impacts the biophysical and biological properties of an ADC. In order to address this need, we prepared a carefully selected series of engineered cysteine ADCs and proceeded to systematically evaluate their potency, stability, and PK exposure. The site of conjugation did not have a significant influence on the thermal stability and in vitro cytotoxicity of the ADCs. However, we demonstrate that the rate of cathepsin-mediated linker cleavage is heavily dependent upon site and is closely correlated with ADC hydrophobicity, thus confirming other recent reports of this phenomenon. Interestingly, conjugates with high rates of cathepsin-mediated linker cleavage did not exhibit decreased plasma stability. In fact, the major source of plasma instability was shown to be retro-Michael mediated deconjugation. This process is known to be impeded by succinimide hydrolysis, and thus, we undertook a series of mutational experiments demonstrating that basic residues located nearby the site of conjugation can be a significant driver of succinimide ring opening. Finally, we show that total antibody PK exposure in rat was loosely correlated with ADC hydrophobicity. It is our hope that these observations will help the ADC community to build "design rules" that will enable more efficient prosecution of next-generation ADC discovery programs.


Asunto(s)
Cisteína/química , Inmunoconjugados/química , Secuencia de Aminoácidos , Simulación de Dinámica Molecular
19.
J Biotechnol ; 248: 48-58, 2017 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-28300660

RESUMEN

Protein modifications by intricate cellular machineries often redesign the structure and function of existing proteins to impact biological networks. Disulfide bond formation between cysteine (Cys) pairs is one of the most common modifications found in extracellularly-destined proteins, key to maintaining protein structure. Unpaired surface cysteines on secreted mammalian proteins are also frequently found disulfide-bonded with free Cys or glutathione (GSH) in circulation or culture, the mechanism for which remains unknown. Here we report that these so-called Cys-capping modifications take place outside mammalian cells, not in the endoplasmic reticulum (ER) where oxidoreductase-mediated protein disulfide formation occurs. Unpaired surface cysteines of extracellularly-arrived proteins such as antibodies are uncapped upon secretion before undergoing disulfide exchange with cystine or oxidized GSH in culture medium. This observation has led to a feasible way to selectively modify the nucleophilic thiol side-chain of cell-surface or extracellular proteins in live mammalian cells, by applying electrophiles with a chemical handle directly into culture medium. These findings provide potentially an effective approach for improving therapeutic conjugates and probing biological systems.


Asunto(s)
Anticuerpos , Cisteína , Ingeniería de Proteínas/métodos , Proteínas Recombinantes , Animales , Anticuerpos/química , Anticuerpos/aislamiento & purificación , Anticuerpos/metabolismo , Células CHO , Cricetinae , Cricetulus , Cisteína/química , Cisteína/metabolismo , Dinitrobencenos , Células HEK293 , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
20.
J Craniofac Surg ; 27(7): 1799-1801, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27513767

RESUMEN

Wormian bones are independent ossification centers found within cranial sutures or fontanelles. Though common in adult populations, their presence in children can be associated with several conditions such as osteogenesis imperfecta, hypothyroidism, pyknodysostosis, cleidocranial dysostosis, rickets, and acrocallosal syndrome. These conditions encompass a large range of clinical features but there has only been 1 other reported patient of exomphalos occurring concurrently with these ossicles. The authors present the case of a child with an anterior fontanellar Wormian bone, dysmorphic facial features, and exomphalos major born to unaffected parents. The pattern of features seen in this child did not closely match any condition commonly associated with Wormian bones. The only other reported case of both Wormian bone and exomphalos was in a child with acrocallosal syndrome who presented with more severe dysmorphic features than seen here. It is possible that this patient represents a previously unknown association between acrocallosal syndrome and exomphalos or a less severe variant of the condition. Conversely, this patient may possibly illustrate a newly discovered association between Wormian bones, facial dysmorphism, and midline abdominal defects.


Asunto(s)
Anomalías Múltiples/diagnóstico , Fontanelas Craneales/anomalías , Suturas Craneales/anomalías , Anomalías Craneofaciales/diagnóstico , Hernia Umbilical/diagnóstico , Atrofia Muscular/diagnóstico , Anomalías Múltiples/cirugía , Fontanelas Craneales/diagnóstico por imagen , Suturas Craneales/diagnóstico por imagen , Anomalías Craneofaciales/cirugía , Humanos , Recién Nacido , Masculino , Atrofia Muscular/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...