Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biophys J ; 97(4): 1125-9, 2009 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-19686660

RESUMEN

Calcium is essential for many biological processes involved in cellular motility. However, the pathway by which calcium influences motility, in processes such as muscle contraction and neuronal growth, is often indirect and complex. We establish a simple and direct mechanochemical link that shows how calcium quantitatively regulates the dynamics of a primitive motile system, the actin-based acrosomal bundle of horseshoe crab sperm. The extension of this bundle requires the continuous presence of external calcium. Furthermore, the extension rate increases with calcium concentration, but at a given concentration, we find that the volumetric rate of extension is constant. Our experiments and theory suggest that calcium sequentially binds to calmodulin molecules decorating the actin filaments. This binding leads to a collective wave of untwisting of the actin filaments that drives bundle extension.


Asunto(s)
Actinas/fisiología , Calcio/fisiología , Modelos Biológicos , Modelos Químicos , Proteínas Motoras Moleculares/fisiología , Motilidad Espermática/fisiología , Espermatozoides/fisiología , Actinas/química , Animales , Calcio/química , Células Cultivadas , Módulo de Elasticidad , Cangrejos Herradura , Masculino , Proteínas Motoras Moleculares/química , Espermatozoides/química , Estrés Mecánico
2.
Biophys J ; 92(10): 3729-33, 2007 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-17351007

RESUMEN

Cellular movements are produced by forces. Typically, cytoskeletal proteins such as microtubules and actin filaments generate forces via polymerization or in conjunction with molecular motors. However, the fertilization of a Limulus polyphemus egg involves a third type of actin-based cellular engine--a biological spring. During the acrosome reaction, a 60-microm long coiled and twisted bundle of actin filaments straightens and extends from a sperm cell, penetrating the vitelline layer surrounding the egg. A subtle overtwist of 0.2 degrees /subunit underlies the mechanochemical basis for the extension of this actin spring. Upon calcium activation, this conformational strain energy is converted to mechanical work, generating the force required to extend the bundle through the vitelline layer. In this article, we stall the extension of the acrosome bundle in agarose gels of different concentrations. From the stall forces, we estimate a maximum force of 2 nN and a puncturing pressure of 1.6 MPa. We show the maximum force of extension is three times larger than the force required to puncture the vitelline layer. Thus, the elastic strain energy stored in the acrosome bundle is more than sufficient to power the acrosome reaction through the egg envelope.


Asunto(s)
Actinas/química , Actinas/ultraestructura , Modelos Químicos , Modelos Moleculares , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/ultraestructura , Simulación por Computador , Elasticidad , Movimiento (Física) , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA