Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Epigenetics ; 18(1): 2222246, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37322851

RESUMEN

Benzo[a]pyrene (BaP) is ubiquitously present in the aquatic environment and has been identified as a bone toxicant. Previous studies have demonstrated that ancestral BaP exposure can cause transgenerational bone deformities in fish. Transgenerational effects are thought to be caused by heritable epigenetic changes, such as DNA methylation, histone modification, and non-coding RNAs. To investigate the role of DNA methylation in BaP-induced transgenerational skeletal deformities and the related transcriptomic changes in deformed vertebrae, we examined the vertebrae of male F1 and F3 medaka fish using high-throughput RNA sequencing (RNA-seq) and whole-genome bisulphite sequencing (WGBS). The histological results revealed that osteoblast numbers at the vertebral bone decreased in the BaP-derived F1 and F3 adult males in comparison with the control group. Differentially methylated genes (DMGs) associated with osteoblastogenesis (F1 and F3), chondrogenesis (F1 and F3), and osteoclastogenesis (F3) were identified. However, RNA-seq data did not support the role of DNA methylation in the regulation of genes involved in skeletogenesis since there was very little correlation between the level of differential methylation and gene expression profiles related to skeletogenesis. Although DNA methylation plays a major role in the epigenetic regulation of gene expression, the dysregulation of vertebral gene expression patterns observed in the current study is most likely to be mediated by histone modification and miRNAs. Notably, RNA-seq and WGBS data indicated that genes related to nervous system development are more sensitive to ancestral BaP exposure, indicating a more complex transgenerational phenotype in response to ancestral BaP exposure.


Asunto(s)
MicroARNs , Oryzias , Animales , Masculino , Metilación de ADN , Epigénesis Genética , Benzo(a)pireno/toxicidad , Oryzias/genética , Columna Vertebral , Expresión Génica
2.
J Cancer ; 11(9): 2645-2655, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32201535

RESUMEN

The p70 ribosomal protein S6 kinase 1 (S6K1), a serine/threonine kinase, is commonly overexpressed in a variety of cancers. However, its expression level and functional roles in hepatocellular carcinoma (HCC), which ranks as the third leading cause of cancer-related death worldwide, is still largely unknown. In the current report, we show the in vivo and in vitro overexpression of S6K1 in HCC. In the functional analysis, we demonstrate that S6K1 is required for the proliferation and colony formation abilities in HCC. By using comparative transcriptomic analysis followed by gene ontology enrichment analysis and Ingenuity Pathway Analysis, we find that the depletion of S6K1 can elevate the expression of a cluster of apoptotic genes, tumor suppressor genes and immune responsive genes. Moreover, the knockdown of S6K1 is predicted to reduce the tumorigenicity of HCC through the regulation of hubs of genes including STAT1, HDAC4, CEBPA and ONECUT1. In conclusion, we demonstrate the oncogenic role of S6K1 in HCC, suggesting the possible use of S6K1 as a therapeutic target for HCC treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...