Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 12: 701344, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34987412

RESUMEN

Injuries that occur early in life are often at the root of adult illness. Neonatal maternal separation (NMS) is a form of early life stress that has persistent and sex-specific effects on the development of neural networks, including those that regulate breathing. The release of stress hormones during a critical period of development contributes to the deleterious consequences of NMS, but the role of increased corticosterone (CORT) in NMS-induced respiratory disturbance is unknown. Because erythropoietin (EPO) is a potent neuroprotectant that prevents conditions associated with hyperactivation of the stress neuroaxis in a sex-specific manner, we hypothesized that EPO reduces the sex-specific alteration of respiratory regulation induced by NMS in adult mice. Animals were either raised under standard conditions (controls) or exposed to NMS 3 h/day from postnatal days 3-12. We tested the efficacy of EPO in preventing the effects of NMS by comparing wild-type mice with transgenic mice that overexpress EPO only in the brain (Tg21). In 7-days-old pups, NMS augmented CORT levels ~2.5-fold by comparison with controls but only in males; this response was reduced in Tg21 mice. Respiratory function was assessed using whole-body plethysmography. Apneas were detected during sleep; the responsiveness to stimuli was measured by exposing mice to hypoxia (10% O2; 15 min) and hypercapnia (5% CO2; 10 min). In wild-type, NMS increased the number of apneas and the hypercapnic ventilatory response (HcVR) only in males; with no effect on Tg21. In wild-type males, the incidence of apneas was positively correlated with HcVR and inversely related to the tachypneic response to hypoxia. We conclude that neural EPO reduces early life stress-induced respiratory disturbances observed in males.

2.
J Bone Miner Res ; 33(11): 2007-2020, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29989666

RESUMEN

Fanconi anemia (FA) is a rare genetic disorder associated with a progressive decline in hematopoietic stem cells leading to bone marrow failure. FA is also characterized by a variety of developmental defects including short stature and skeletal malformations. More than half of children affected with FA have radial-ray abnormalities, and many patients have early onset osteopenia/osteoporosis. Although many Fanconi anemia genes have been identified and a molecular pathway defined, the underlying mechanism leading to bone defects remains elusive. To understand the role of FA genes in skeletal development and bone microarchitecture, we evaluated bone physiology during embryogenesis and in adult FancA- and FancC-deficient mice. We found that both FancA-/- and FancC-/- embryos have abnormal skeletal development shown by skeletal malformations, growth delay, and reduced bone mineralization. FancC-/- adult mice present altered bone morphology and microarchitecture with a significant decrease in cortical bone mineral density in a sex-specific manner. Mechanical testing revealed that male but not female FancC-/- mice show reduced bone strength compared with their wild-type littermates. Ex vivo cultures showed that FancA-/- and FancC-/- bone marrow-derived mesenchymal stem cells (BM MSC) have impaired differentiation capabilities together with altered gene expression profiles. Our results suggest that defective bone physiology in FA occurs in utero and possibly results from altered BM MSC function. These results provide valuable insights into the mechanism involved in FA skeletal defects. © 2018 American Society for Bone and Mineral Research.


Asunto(s)
Huesos/anomalías , Huesos/fisiopatología , Calcificación Fisiológica , Proteína del Grupo de Complementación C de la Anemia de Fanconi/genética , Eliminación de Gen , Animales , Huesos/patología , Diferenciación Celular , Embrión de Mamíferos/anomalías , Embrión de Mamíferos/patología , Proteína del Grupo de Complementación A de la Anemia de Fanconi/deficiencia , Proteína del Grupo de Complementación A de la Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación C de la Anemia de Fanconi/deficiencia , Femenino , Regulación de la Expresión Génica , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL , Cráneo/embriología , Columna Vertebral/embriología
3.
Respir Physiol Neurobiol ; 242: 73-79, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28396201

RESUMEN

Cerebral erythropoietin (Epo) plays a crucial role for respiratory control in newborn rodents. We showed previously that soluble Epo receptor (sEpoR: an Epo antagonist) reduces basal ventilation and hypoxic hyperventilation at postnatal day 10 (P10) and in adult mice. However, at these ages (P10 and adulthood), Epo had no effect on central chemosensitivity. Nevertheless, it is known that the sensitivity to CO2/H+ during the mammalian respiratory network maturation process is age-dependent. Accordingly, in this study we wanted to test the hypothesis that cerebral Epo is involved in the breathing stimulation induced by the activation of central CO2/H+ chemoreceptors at earlier postnatal ages. To this end, en bloc brainstem-spinal cord preparations were obtained from P4 mice and the fictive breathing response to CO2-induced acidosis or metabolic acidosis was analyzed. This age (P4) was chosen because previous research from our laboratory showed that Epo altered (in a dose- and time-dependent manner) the fictive ventilation elicited in brainstem-spinal cord preparations. Moreover, as it was observed that peripheral chemoreceptors determined the respiratory sensitivity of central chemoreceptors to CO2, the use of this technique restricts our observations to central modulation. Our results did not show differences between preparations from control and transgenic animals (Tg21: overexpressing cerebral Epo; Epo-TAgh: cerebral Epo deficient mice). However, when Tg21 brainstem preparations were incubated for 1h with sEpoR, or with inhibitors of ERK/Akt (thus blocking the activation of the Epo molecular pathway), the fictive breathing response to CO2-induced acidosis was blunted. Our data suggest that variation of the Epo/sEpoR ratio is central to breathing modulation during CO2 challenges, and calls attention to clinical perspectives based on the use of Epo drugs at birth in hypoventilation cases.


Asunto(s)
Tronco Encefálico/metabolismo , Dióxido de Carbono/metabolismo , Eritropoyetina/metabolismo , Protones , Médula Espinal/metabolismo , Acidosis/metabolismo , Animales , Animales Recién Nacidos , Tronco Encefálico/efectos de los fármacos , Eritropoyetina/antagonistas & inhibidores , Eritropoyetina/genética , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Eritropoyetina/antagonistas & inhibidores , Receptores de Eritropoyetina/metabolismo , Respiración/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Técnicas de Cultivo de Tejidos
4.
Front Physiol ; 7: 432, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27729873

RESUMEN

Perinatal exposure to adverse experiences disrupts brain development, including the brainstem network that regulates breathing. At adulthood, rats previously subjected to stress (in the form of neonatal maternal separation; NMS) display features reported in patients suffering from sleep disordered breathing, including an increased hypoxic ventilatory response and hypertension. This effect is also sex-specific (males only). Based on these observations, we hypothesized that NMS augments the carotid body's O2-chemosensitivity. Using an isolated and perfused ex vivo carotid body preparation from adult rats we compared carotid sinus nerve (CSN) responses to hypoxia and hypercapnia in carotid bodies harvested from adult rats that either experienced control conditions (no experimental manipulation) or were subjected to NMS (3 h/day from postnatal days 3 to 12). In males, the CSN response to hypoxia measured in preparations from NMS males was 1.5 fold higher than controls. In control rats, the female's response was similar to that of males; however, the increase in CSN activity measured in NMS females was 3.0 times lower than controls. The CSN response to hypercapnia was not influenced by stress or sex. We conclude that NMS is sufficient to have persistent and sex-specific effects on the carotid body's response to hypoxia. Because NMS also has sex-specific effects on the neuroendocrine response to stress, we propose that carotid body function is influenced by stress hormones. This, in turn, leads to a predisposition toward cardio-respiratory disorders.

5.
Neurosci Lett ; 609: 63-8, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26472708

RESUMEN

The stimulation of central chemoreceptors by CO2 is considered essential for breathing. The supporting evidence include the fact that central apnea in neonates correlates with immaturity of the CO2-sensing mechanism, and that congenital central hypoventilation syndrome (CCHS) is characterized by the absence of a ventilatory response to elevated PCO2. We reported previously that cerebral erythropoietin (Epo) is a potent respiratory stimulant upon normoxia and hypoxia. The injection of soluble Epo receptor (sEpoR; the natural EpoR competitor to bind Epo) via the cisterna magna (ICI: intra-cisternal injection) decreases basal ventilation in adult and newborn mice. Moreover, sEpoR induces respiratory depression in adult and newborn mice exposed to hypoxia. In this study we tested the hypothesis that endogenous brain Epo also modulates the respiratory stimulation induced by the activation of central CO2 chemoreceptors. Adult and newborn male and female mice received an injection of sEpoR or vehicle via the cisterna magna. Twenty-four hours later basal minute ventilation and the ventilatory response to hypercapnia (5% CO2) were evaluated by plethysmography. Our results did not show a difference in the hypercapnic response between sEpoR and vehicle-injected male or female mice at postnatal or adult ages. We concluded that endogenous brain Epo does not contribute to modulating the PCO2-mediated central activation of breathing.


Asunto(s)
Encéfalo/metabolismo , Eritropoyetina/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Dióxido de Carbono/farmacología , Cisterna Magna , Femenino , Inyecciones Intraventriculares , Masculino , Ratones Endogámicos C57BL , Oxígeno/farmacología , Receptores de Eritropoyetina/administración & dosificación , Respiración
6.
J Exp Biol ; 214(Pt 16): 2660-70, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21795561

RESUMEN

Acceleration of embryonic rotation is a common response to hypoxia among pond snails. It was first characterized in Helisoma trivolvis embryos, which have a pair of sensorimotor neurons that detect hypoxia and release serotonin onto postsynaptic ciliary cells. The objective of the present study was to determine how the hypoxia response is mediated in Lymnaea stagnalis, which differ from H. trivolvis by having both serotonergic and dopaminergic neurons, and morphologically distinct ciliated structures at comparative stages of embryonic development. Time-lapse video recordings of the rotational behavior in L. stagnalis revealed similar rotational features to those previously observed in H. trivolvis, including rotational surges and rotational responses to hypoxia. Serotonin and dopamine increased the rate of rotation with similar potency. In contrast, serotonin was more potent than dopamine in stimulating the ciliary beat frequency of isolated pedal cilia. Isolated apical plate cilia displayed an irregular pattern of ciliary beating that precluded the measurement of ciliary beat frequency. A qualitative assessment of ciliary beating revealed that both serotonin and dopamine were able to stimulate apical plate cilia. The ciliary responses to dopamine were reversible in both pedal and apical plate cilia, whereas the responses to serotonin were only reversible at concentrations below 100 µmol l(-1). Mianserin, a serotonin receptor antagonist, and SKF83566, a dopamine receptor antagonist, effectively blocked the rotational responses to serotonin and dopamine, respectively. The rotational response to hypoxia was only partially blocked by mianserin, but was fully blocked by SKF83566. These data suggest that, despite the ability of serotonin to stimulate ciliary beating in L. stagnalis embryos, the rotational response to hypoxia is primarily mediated by the transient apical catecholaminergic neurons that innervate the ciliated apical plate.


Asunto(s)
Conducta Animal , Evolución Biológica , Cilios/metabolismo , Embrión no Mamífero/metabolismo , Lymnaea/embriología , Lymnaea/metabolismo , Neurotransmisores/metabolismo , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/análogos & derivados , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/farmacología , Anaerobiosis/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Cilios/efectos de los fármacos , Dopamina/metabolismo , Embrión no Mamífero/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Lymnaea/efectos de los fármacos , Mianserina/farmacología , Rotación , Serotonina/metabolismo , Factores de Tiempo
7.
J Exp Biol ; 213(Pt 9): 1529-35, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20400638

RESUMEN

Embryos of the pond snail, Helisoma trivolvis, develop bilateral serotonergic neurons that innervate ciliary bands and stimulate cilia-driven rotation. This behaviour is postulated to increase oxygen availability during hypoxia by mixing the capsular fluid. We hypothesised that the stimulation of ciliary-driven rotation by serotonin (5-HT) enhances the survival of embryos during prolonged hypoxia. Embryo rotation and survival were monitored in different levels of oxygen for 24-48 h while in the presence or absence of 5-HT (100 micromol l(-1)) or a 5-HT antagonist (50 micromol l(-1)). Long-term hypoxia caused delayed embryonic development that appeared morphologically normal. Hypoxia also induced a transient increase in rotation rate in embryos exposed to artificial pond water (APW) or 5-HT that lasted around 3 h. 5-HT-treated embryos had an elevated rotation rate over embryos in APW throughout the long-term exposure to hypoxia. Long-term anoxia also induced a transient increase in rotation rate in embryos exposed to APW or 5-HT. Rotation ceased in embryos exposed to APW by 13 h but persisted in 5-HT-treated embryos for up to 40 h. Fifty percent mortality was reached at 9 h of anoxia in embryos in APW and at 24 h in 5-HT-treated embryos. The 5-HT antagonist mianserin partially inhibited the 5-HT enhancement of rotation but not the prolongation of survival in anoxia. The ability of 5-HT to prolong survival in anoxia reveals a 5-HT-activated metabolic pathway that liberates an alternative energy source.


Asunto(s)
Oxígeno/metabolismo , Serotonina/metabolismo , Caracoles/embriología , Animales
8.
J Exp Biol ; 211(Pt 11): 1729-36, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18490388

RESUMEN

Embryos of freshwater snails undergo direct development from single cell to juvenile inside egg masses that are deposited on vegetation and other substratum in pond, lake and stream habitats. Helisoma trivolvis, a member of the Planorbidae family of basommatophoran snails, has served as a model for studying the developmental and physiological roles for neurotransmitters during embryogenesis. Early studies revealed that H. trivolvis embryos from stage E15 to E30, the period between gastrulation and the trochophore-juvenile transition, display a cilia-driven behaviour consisting of slow basal rotation and transient periods of rapid rotation. The discovery of a bilateral pair of early serotonergic neurons, named ENC1, which project an apical process to the embryo surface and basal neurites to ciliated cells, prompted the hypothesis that each ENC1 is a dual-function sensory and motor neuron mediating a physiological embryonic response. This article reviews our past and present studies and addresses questions concerning this hypothesis, including the following. (1) What environmental signal regulates ENC1 activity and rotational behaviour? (2) Does ENC1 function as both a primary sensory and motor neuron underlying the rotational behaviour? (3) What are the sensory transduction mechanisms? (4) How does ENC1 regulate ciliary beating? (5) Do other basommatophoran species have similar neural-ciliary pathways and behavioural responses? (6) How is the behaviour manifest in the dynamic natural environment? In this review, we introduce the ;embryo stir-bar hypothesis', which proposes that embryonic rotation is a hypoxia-sensitive respiratory behaviour responsible for mixing the egg capsule fluid, thereby enhancing delivery of environmental oxygen to the embryo.


Asunto(s)
Embrión no Mamífero/fisiología , Caracoles/embriología , Vías Aferentes/fisiología , Animales , Hipoxia de la Célula , Respiración de la Célula , Cilios/fisiología , Embrión no Mamífero/citología , Desarrollo Embrionario , Neuronas Motoras/fisiología , Neuronas Aferentes/fisiología , Oxígeno/metabolismo , Transducción de Señal , Caracoles/citología , Caracoles/fisiología
9.
J Cell Biochem ; 93(6): 1282-96, 2004 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-15503302

RESUMEN

Definitive localization of c-Myc within the nucleus is important to fully understand the regulation and function of this oncoprotein. Studies of c-Myc distribution, however, have produced conflicting results. To overcome technical challenges inherent in c-Myc cytology, we use here three methods to visualize c-Myc and in addition examine the impact of proteasome inhibition. EYFP or HA-tagged Myc was reintroduced by stable transfection into myc null diploid rat fibroblasts, replacing endogenous Myc with tagged Myc expressed at or near normal levels. This tagged Myc is shown to functionally replace the endogenous Myc by restoration of normal cell morphology and growth rate. We were able to confirm key findings using antibodies to the endogenous c-Myc and/or its partner, Max. Contrary to some published reports, by all three methods the c-Myc protein in rat fibroblasts distributes predominantly throughout the nucleus in a dispersed granular pattern, avoiding the nucleolus. Importantly, however, several findings provide evidence for an unanticipated relationship between c-Myc and PML nuclear bodies, which is enhanced under conditions of proteasome inhibition. Evidence of Max concentration within PML bodies is shown both with and without proteasome inhibition, strengthening the relationship between PML bodies and Myc/Max. Some accumulation of Myc and Max in nucleoli upon proteasome inhibition is also observed, although co-localization of ubiquitin was only seen with PML bodies. This work provides a comprehensive study of c-Myc distribution and also presents the first evidence of a relationship between turnover of this oncoprotein and PML nuclear bodies, known to break down in certain cancers.


Asunto(s)
Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Cuerpos de Inclusión Intranucleares , Proteínas Proto-Oncogénicas c-myc/fisiología , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Nucléolo Celular/ultraestructura , Núcleo Celular/ultraestructura , Proteínas de Unión al ADN/metabolismo , Diploidia , Fibroblastos/metabolismo , Células HeLa , Heterocigoto , Homocigoto , Humanos , Leupeptinas/farmacología , Ratones , Ratones Noqueados , Proteínas de Neoplasias/fisiología , Proteínas Nucleares/fisiología , Proteína de la Leucemia Promielocítica , Inhibidores de Proteasoma , Proteínas Proto-Oncogénicas c-myc/genética , Ratas , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Transfección , Proteínas Supresoras de Tumor
10.
J Cell Biol ; 167(2): 269-79, 2004 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-15504910

RESUMEN

This paper investigates the nuclear localization of human telomeres and, specifically, the 4q35 subtelomere mutated in facioscapulohumeral dystrophy (FSHD). FSHD is a common muscular dystrophy that has been linked to contraction of D4Z4 tandem repeats, widely postulated to affect distant gene expression. Most human telomeres, such as 17q and 17p, avoid the nuclear periphery to reside within the internal, euchromatic compartment. In contrast, 4q35 localizes at the peripheral heterochromatin with 4p more internal, generating a reproducible chromosome orientation that we relate to gene expression profiles. Studies of hybrid and translocation cell lines indicate this localization is inherent to the distal tip of 4q. Investigation of heterozygous FSHD myoblasts demonstrated no significant displacement of the mutant allele from the nuclear periphery. However, consistent association of the pathogenic D4Z4 locus with the heterochromatic compartment supports a potential role in regulating the heterochromatic state and makes a telomere positioning effect more likely. Furthermore, D4Z4 repeats on other chromosomes also frequently organize with the heterochromatic compartment at the nuclear or nucleolar periphery, demonstrating a commonality among chromosomes harboring this subtelomere repeat family.


Asunto(s)
Cromosomas Humanos Par 4/ultraestructura , Heterocromatina/química , Distrofia Muscular Facioescapulohumeral/genética , Proteínas/genética , Telómero/ultraestructura , Alelos , Línea Celular , Núcleo Celular/metabolismo , Cromosomas Humanos Par 17 , Fibroblastos/metabolismo , Heterocromatina/metabolismo , Heterocromatina/ultraestructura , Heterocigoto , Humanos , Procesamiento de Imagen Asistido por Computador , Hibridación in Situ , Interfase , Proteínas de Microfilamentos , Músculos/citología , Músculos/metabolismo , Mutación , Proteínas Nucleares , Estructura Terciaria de Proteína , Proteínas de Unión al ARN , Telómero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA