Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 17(15): e2006050, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33502104

RESUMEN

Glioblastoma multiforme (GBM) is the most lethal primary brain tumor characterized by high cellular and molecular heterogeneity, hypervascularization, and innate drug resistance. Cellular components and extracellular matrix (ECM) are the two primary sources of heterogeneity in GBM. Here, biomimetic tri-regional GBM models with tumor regions, acellular ECM regions, and an endothelial region with regional stiffnesses patterned corresponding to the GBM stroma, pathological or normal brain parenchyma, and brain capillaries, are developed. Patient-derived GBM cells, human endothelial cells, and hyaluronic acid derivatives are used to generate a species-matched and biochemically relevant microenvironment. This in vitro study demonstrates that biophysical cues are involved in various tumor cell behaviors and angiogenic potentials and promote different molecular subtypes of GBM. The stiff models are enriched in the mesenchymal subtype, exhibit diffuse invasion of tumor cells, and induce protruding angiogenesis and higher drug resistance to temozolomide. Meanwhile, the soft models demonstrate enrichment in the classical subtype and support expansive cell growth. The three-dimensional bioprinting technology utilized in this study enables rapid, flexible, and reproducible patient-specific GBM modeling with biophysical heterogeneity that can be employed by future studies as a tunable system to interrogate GBM disease mechanisms and screen drug compounds.


Asunto(s)
Bioimpresión , Neoplasias Encefálicas , Glioblastoma , Línea Celular Tumoral , Células Endoteliales , Humanos , Microambiente Tumoral
2.
Cell Res ; 30(10): 833-853, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32499560

RESUMEN

Brain tumors are dynamic complex ecosystems with multiple cell types. To model the brain tumor microenvironment in a reproducible and scalable system, we developed a rapid three-dimensional (3D) bioprinting method to construct clinically relevant biomimetic tissue models. In recurrent glioblastoma, macrophages/microglia prominently contribute to the tumor mass. To parse the function of macrophages in 3D, we compared the growth of glioblastoma stem cells (GSCs) alone or with astrocytes and neural precursor cells in a hyaluronic acid-rich hydrogel, with or without macrophage. Bioprinted constructs integrating macrophage recapitulate patient-derived transcriptional profiles predictive of patient survival, maintenance of stemness, invasion, and drug resistance. Whole-genome CRISPR screening with bioprinted complex systems identified unique molecular dependencies in GSCs, relative to sphere culture. Multicellular bioprinted models serve as a scalable and physiologic platform to interrogate drug sensitivity, cellular crosstalk, invasion, context-specific functional dependencies, as well as immunologic interactions in a species-matched neural environment.


Asunto(s)
Glioblastoma/inmunología , Microambiente Tumoral/inmunología , Animales , Bioimpresión , Línea Celular Tumoral , Proliferación Celular , Humanos , Ratones , Células-Madre Neurales , Andamios del Tejido
3.
Adv Healthc Mater ; 9(15): e1900977, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31697028

RESUMEN

Growth factors (GFs) are critical components in governing cell fate during tissue regeneration. Their controlled delivery is challenging due to rapid turnover rates in vivo. Functionalized hydrogels, such as heparin-based hydrogels, have demonstrated great potential in regulating GF release. While the retention effects of various concentrations and molecular weights of heparin have been investigated, the role of geometry is unknown. In this work, 3D printing is used to fabricate GF-embedded heparin-based hydrogels with arbitrarily complex geometry (i.e., teabag, flower shapes). Simplified cylindrical core-shell structures with varied shell thickness are printed, and the rates of GF release are measured over the course of 28 days. Increasing the shell layers' thickness decreases the rate of GF release. Additionally, a mathematical model is developed, which is found capable of accurately predicting GF release kinetics in hydrogels with shell layers greater than 0.5 mm thick (R2 > 0.96). Finally, the sequential release is demonstrated by printing two GFs in alternating radial layers. By switching the spatial order, the delivery sequence of the GFs can be modulated. This study demonstrates how 3D printing can be utilized to fabricate user-defined structures with unique geometry in order to control the rate of GF release in hydrogels.


Asunto(s)
Heparina , Hidrogeles , Péptidos y Proteínas de Señalización Intercelular , Impresión Tridimensional , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...