Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Sci Rep ; 14(1): 14909, 2024 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942890

RESUMEN

Long-term data on ustekinumab in real-life Crohn's disease patients are still missing, though randomized controlled trials demonstrated it as a favorable therapeutic option. We aimed to evaluate ustekinumab's clinical efficacy, drug sustainability, and safety in a prospective, nationwide, multicenter Crohn's disease patient cohort with a three-year follow-up. Crohn's disease patients on ustekinumab treatment were consecutively enrolled from 9 Hungarian Inflammatory Bowel Disease centers between January 2019 and May 2020. Patient and disease characteristics, treatment history, clinical disease activity (Harvey Bradshaw Index (HBI)), biomarkers, and endoscopic activity (Simple Endoscopic Score for Crohn's Disease (SES-CD)) were collected for three-years' time. A total of 148 patients were included with an overall 48.9% of complex behavior of the Crohn's disease and 97.2% of previous anti-TNF exposure. The pre-induction remission rates were 12.2% (HBI), and 5.1% (SES-CD). Clinical remission rates (HBI) were 52.2%, 55.6%, and 50.9%, whereas criteria of an endoscopic remission were fulfilled in 14.3%, 27.5%, and 35.3% of the subjects at the end of the first, second, and third year, respectively. Dose intensification was high with 84.0% of the patients on an 8-weekly and 29.9% on a 4-weekly regimen at the end of year 3. Drug sustainability was 76.9% during the follow-up period with no serious adverse events observed. Ustekinumab in the long-term is an effective, sustainable, and safe therapeutic option for Crohn's disease patients with severe disease phenotype and high previous anti-TNF biological failure, requiring frequent dose intensifications.


Asunto(s)
Enfermedad de Crohn , Ustekinumab , Humanos , Enfermedad de Crohn/tratamiento farmacológico , Ustekinumab/uso terapéutico , Ustekinumab/efectos adversos , Masculino , Femenino , Adulto , Resultado del Tratamiento , Persona de Mediana Edad , Estudios Prospectivos , Estudios de Seguimiento , Inducción de Remisión , Hungría
2.
Sci Rep ; 14(1): 12016, 2024 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-38797778

RESUMEN

Hypercholesterolemia (HC) induces, propagates and exacerbates cardiovascular diseases via various mechanisms that are yet not properly understood. Extracellular vesicles (EVs) are involved in the pathomechanism of these diseases. To understand how circulating or cardiac-derived EVs could affect myocardial functions, we analyzed the metabolomic profile of circulating EVs, and we performed an in-depth analysis of cardiomyocyte (CM)-derived EVs in HC. Circulating EVs were isolated with Vezics technology from male Wistar rats fed with high-cholesterol or control chow. AC16 human CMs were treated with Remembrane HC supplement and EVs were isolated from cell culture supernatant. The biophysical properties and the protein composition of CM EVs were analyzed. THP1-ASC-GFP cells were treated with CM EVs, and monocyte activation was measured. HC diet reduced the amount of certain phosphatidylcholines in circulating EVs, independently of their plasma level. HC treatment significantly increased EV secretion of CMs and greatly modified CM EV proteome, enriching several proteins involved in tissue remodeling. Regardless of the treatment, CM EVs did not induce the activation of THP1 monocytes. In conclusion, HC strongly affects the metabolome of circulating EVs and dysregulates CM EVs, which might contribute to HC-induced cardiac derangements.


Asunto(s)
Vesículas Extracelulares , Hipercolesterolemia , Miocitos Cardíacos , Ratas Wistar , Vesículas Extracelulares/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Animales , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patología , Hipercolesterolemia/sangre , Masculino , Ratas , Humanos , Monocitos/metabolismo
3.
Phys Rev Lett ; 132(13): 131902, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38613305

RESUMEN

We propose a new way of understanding how chiral symmetry is realized in the high temperature phase of QCD. Based on the finding that a simple free instanton gas precisely describes the details of the lowest part of the spectrum of the lattice overlap Dirac operator, we propose an instanton-based random matrix model of QCD with dynamical quarks. Simulations of this model reveal that even for small quark mass the Dirac spectral density has a singularity at the origin, caused by a dilute gas of free instantons. Even though the interaction, mediated by light dynamical quarks, creates small instanton-anti-instanton molecules, those do not influence the singular part of the spectrum, and this singular part is shown to dominate Banks-Casher type sums in the chiral limit. By generalizing the Banks-Casher formula for the singular spectrum, we show that in the chiral limit the chiral condensate vanishes if there are at least two massless flavors. Our model also indicates a possible way of resolving a long-standing debate, as it suggests that for two massless quark flavors the U(1)_{A} symmetry is likely to remain broken up to arbitrarily high finite temperatures.

4.
Nat Rev Cardiol ; 21(7): 443-462, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38279046

RESUMEN

Immune checkpoint molecules are physiological regulators of the adaptive immune response. Immune checkpoint inhibitors (ICIs), such as monoclonal antibodies targeting programmed cell death protein 1 or cytotoxic T lymphocyte-associated protein 4, have revolutionized cancer treatment and their clinical use is increasing. However, ICIs can cause various immune-related adverse events, including acute and chronic cardiotoxicity. Of these cardiovascular complications, ICI-induced acute fulminant myocarditis is the most studied, although emerging clinical and preclinical data are uncovering the importance of other ICI-related chronic cardiovascular complications, such as accelerated atherosclerosis and non-myocarditis-related heart failure. These complications could be more difficult to diagnose, given that they might only be present alongside other comorbidities. The occurrence of these complications suggests a potential role of immune checkpoint molecules in maintaining cardiovascular homeostasis, and disruption of physiological immune checkpoint signalling might thus lead to cardiac pathologies, including heart failure. Although inflammation is a long-known contributor to the development of heart failure, the therapeutic targeting of pro-inflammatory pathways has not been successful thus far. The increasingly recognized role of immune checkpoint molecules in the failing heart highlights their potential use as immunotherapeutic targets for heart failure. In this Review, we summarize the available data on ICI-induced cardiac dysfunction and heart failure, and discuss how immune checkpoint signalling is altered in the failing heart. Furthermore, we describe how pharmacological targeting of immune checkpoints could be used to treat heart failure.


Asunto(s)
Insuficiencia Cardíaca , Inhibidores de Puntos de Control Inmunológico , Humanos , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/inmunología , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Animales , Transducción de Señal , Cardiotoxicidad
5.
Front Oncol ; 13: 1207295, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37860193

RESUMEN

Objective: The approval of immunotherapy (I-O) for the treatment of late-stage non-small cell lung cancer (NSCLC) opened new perspectives in improving survival outcomes. However, survival data have not yet been provided from the period of the Covid-19 pandemic. The aims of our study were to assess and compare survival outcomes of patients with advanced LC receiving systemic anticancer treatment (SACT) before and after the approval of immunotherapy in Hungary, and to examine the impact of pandemic on survival outcomes using data from the Hungarian National Health Insurance Fund (NHIF) database. Methods: This retrospective, longitudinal study included patients aged ≥20 years who were diagnosed with advanced stage lung cancer (LC) (ICD-10 C34) between 1 January 2011 and 31 December 2021 and received SACT treatment without LC-related surgery. Survival rates were evaluated by year of diagnosis, sex, age, and LC histology. Results: In total, 35,416 patients were newly diagnosed with advanced LC and received SACT during the study period (mean age at diagnosis: 62.1-66.3 years). In patients with non-squamous cell carcinoma, 3-year survival was significantly higher among those diagnosed in 2019 vs. 2011-2012 (28.7% [95% CI: 26.4%-30.9%] vs. 14.45% [95% CI: 13.21%-15.69%], respectively). In patients with squamous cell carcinoma, 3-year survival rates were 22.3% (95% CI: 19.4%-25.2%) and 13.37% (95% CI: 11.8%-15.0%) in 2019 and 2011-2012, respectively, the change was statistically significant. Compared to 2011-2012, the hazard ratio of survival change for non-squamous cell carcinoma patients was 0.91, 0.82, and 0.62 in 2015-2016, 2017-2018, and 2019, respectively (p<0.001 for all cases). In the squamous cell carcinoma group, corresponding hazard ratios were 0.93, 0.87, and 0.78, respectively (p<0.001 for all cases). Survival improvements remained significant in both patient populations during the Covid-19 pandemic (2020-2021). No significant improvements were found in the survival of patients with small cell carcinoma. Platinum-based chemotherapy was the most common first-line treatment in all diagnostic periods, however, the proportion of patients receiving first- or second-line immunotherapy significantly increased during the study period. Conclusion: 3-year survival rates of NSCLC almost doubled among patients with non-squamous cell carcinoma and significantly improved at squamous cell carcinoma over the past decade in Hungary. Improvements could potentially be attributable by the introduction of immunotherapy and were not offset by the Covid-19 pandemic.

6.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37762130

RESUMEN

The identification of novel drug targets is needed to improve the outcomes of heart failure (HF). G-protein-coupled receptors (GPCRs) represent the largest family of targets for already approved drugs, thus providing an opportunity for drug repurposing. Here, we aimed (i) to investigate the differential expressions of 288 cardiac GPCRs via droplet digital PCR (ddPCR) and bulk RNA sequencing (RNAseq) in a rat model of left ventricular pressure-overload; (ii) to compare RNAseq findings with those of ddPCR; and (iii) to screen and test for novel, translatable GPCR drug targets in HF. Male Wistar rats subjected to transverse aortic constriction (TAC, n = 5) showed significant systolic dysfunction vs. sham operated animals (SHAM, n = 5) via echocardiography. In TAC vs. SHAM hearts, RNAseq identified 69, and ddPCR identified 27 significantly differentially expressed GPCR mRNAs, 8 of which were identified using both methods, thus showing a correlation between the two methods. Of these, Prostaglandin-F2α-receptor (Ptgfr) was further investigated and localized on cardiomyocytes and fibroblasts in murine hearts via RNA-Scope. Antagonizing Ptgfr via AL-8810 reverted angiotensin-II-induced cardiomyocyte hypertrophy in vitro. In conclusion, using ddPCR as a novel screening method, we were able to identify GPCR targets in HF. We also show that the antagonism of Ptgfr could be a novel target in HF by alleviating cardiomyocyte hypertrophy.


Asunto(s)
Insuficiencia Cardíaca , Masculino , Ratas , Ratones , Animales , Ratas Wistar , Insuficiencia Cardíaca/genética , Miocitos Cardíacos , Reacción en Cadena de la Polimerasa , Hipertrofia
7.
Sci Rep ; 13(1): 356, 2023 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-36611037

RESUMEN

Interleukin-1ß (IL-1ß) is a key mediator of non-alcoholic steatohepatitis (NASH), a chronic liver disease, and of systemic inflammation-driven aging. IL-1ß contributes to cardio-metabolic decline, and may promote hepatic oncogenic transformation. Therefore, IL-1ß is a potential therapeutic target in these pathologies. We aimed to investigate the hepatic and cardiac effects of an IL-1ß targeting monoclonal antibody in an aged mouse model of NASH. 24 months old male C57Bl/6J mice were fed with control or choline deficient (CDAA) diet and were treated with isotype control or anti-IL-1ß Mab for 8 weeks. Cardiac functions were assessed by conventional-and 2D speckle tracking echocardiography. Liver samples were analyzed by immunohistochemistry and qRT-PCR. Echocardiography revealed improved cardiac diastolic function in anti-IL-1ß treated mice with NASH. Marked hepatic fibrosis developed in CDAA-fed group, but IL-1ß inhibition affected fibrosis only at transcriptomic level. Hepatic inflammation was not affected by the IL-1ß inhibitor. PCNA staining revealed intensive hepatocyte proliferation in CDAA-fed animals, which was not influenced by neutralization of IL-1ß. IL-1ß inhibition increased hepatic expression of Pd-1 and Ctla4, while Pd-l1 expression increased in NASH. In conclusion, IL-1ß inhibition improved cardiac diastolic function, but did not ameliorate features of NASH; moreover, even promoted hepatic immune checkpoint expression, with concomitant NASH-related hepatocellular proliferation.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Masculino , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/patología , Interleucina-1beta/metabolismo , Hígado/metabolismo , Cirrosis Hepática/patología , Modelos Animales de Enfermedad , Fibrosis , Ratones Endogámicos C57BL
8.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36675100

RESUMEN

Lipid-lowering drugs have been shown to have cardioprotective effects but may have hidden cardiotoxic properties. Therefore, here we aimed to investigate if chronic treatment with the novel lipid-lowering drug bempedoic acid (BA) exerts hidden cardiotoxic and/or cardioprotective effects in a rat model of acute myocardial infarction (AMI). Wistar rats were orally treated with BA or its vehicle for 28 days, anesthetized and randomized to three different groups (vehicle + ischemia/reperfusion (I/R), BA + I/R, and positive control vehicle + ischemic preconditioning (IPC)) and subjected to cardiac 30 min ischemia and 120 min reperfusion. IPC was performed by 3 × 5 min I/R cycles before ischemia. Myocardial function, area at risk, infarct size and arrhythmias were analyzed. Chronic BA pretreatment did not influence cardiac function or infarct size as compared to the vehicle group, while the positive control IPC significantly reduced the infarct size. The incidence of reperfusion-induced arrhythmias was significantly reduced by BA and IPC. This is the first demonstration that BA treatment does not show cardioprotective effect although moderately reduces the incidence of reperfusion-induced arrhythmias. Furthermore, BA does not show hidden cardiotoxic effect in rats with AMI, showing its safety in the ischemic/reperfused heart.


Asunto(s)
Precondicionamiento Isquémico Miocárdico , Infarto del Miocardio , Isquemia Miocárdica , Daño por Reperfusión Miocárdica , Animales , Ratas , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/etiología , Arritmias Cardíacas/prevención & control , Cardiotoxicidad , Lípidos/uso terapéutico , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Ratas Wistar
9.
Cardiovasc Res ; 119(6): 1336-1351, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-36718529

RESUMEN

AIMS: Remote ischaemic preconditioning (RIPC) is a robust cardioprotective intervention in preclinical studies. To establish a working and efficacious RIPC protocol in our laboratories, we performed randomized, blinded in vivo studies in three study centres in rats, with various RIPC protocols. To verify that our experimental settings are in good alignment with in vivo rat studies showing cardioprotection by limb RIPC, we performed a systematic review and meta-analysis. In addition, we investigated the importance of different study parameters. METHODS AND RESULTS: Male Wistar rats were subjected to 20-45 min cardiac ischaemia followed by 120 min reperfusion with or without preceding RIPC by 3 or 4 × 5-5 min occlusion/reperfusion of one or two femoral vessels by clamping, tourniquet, or pressure cuff. RIPC did not reduce infarct size (IS), microvascular obstruction, or arrhythmias at any study centres. Systematic review and meta-analysis focusing on in vivo rat models of myocardial ischaemia/reperfusion injury with limb RIPC showed that RIPC reduces IS by 21.28% on average. In addition, the systematic review showed methodological heterogeneity and insufficient reporting of study parameters in a high proportion of studies. CONCLUSION: We report for the first time the lack of cardioprotection by RIPC in rats, assessed in individually randomized, blinded in vivo studies, involving three study centres, using different RIPC protocols. These results are in discrepancy with the meta-analysis of similar in vivo rat studies; however, no specific methodological reason could be identified by the systematic review, probably due to the overall insufficient reporting of several study parameters that did not improve over the past two decades. These results urge for publication of more well-designed and well-reported studies, irrespective of the outcome, which are required for preclinical reproducibility, and the development of clinically translatable cardioprotective interventions.


Asunto(s)
Precondicionamiento Isquémico , Daño por Reperfusión Miocárdica , Ratas , Masculino , Animales , Ratas Wistar , Reproducibilidad de los Resultados , Precondicionamiento Isquémico/métodos , Daño por Reperfusión Miocárdica/prevención & control
10.
Br J Pharmacol ; 180(6): 740-761, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36356191

RESUMEN

BACKGROUND AND PURPOSE: Immune checkpoint inhibitors (ICI), such as anti-PD-1 monoclonal antibodies, have revolutionized cancer therapy by enhancing the cytotoxic effects of T-cells against tumours. However, enhanced T-cell activity also may cause myocarditis and cardiotoxicity. Our understanding of the mechanisms of ICI-induced cardiotoxicity is limited. Here, we aimed to investigate the effect of PD-1 inhibition on cardiac function and explore the molecular mechanisms of ICI-induced cardiotoxicity. EXPERIMENTAL APPROACH: C57BL6/J and BALB/c mice were treated with isotype control or anti-PD-1 antibody. Echocardiography was used to assess cardiac function. Cardiac transcriptomic changes were investigated by bulk RNA sequencing. Inflammatory changes were assessed by qRT-PCR and immunohistochemistry in heart, thymus, and spleen of the animals. In follow-up experiments, anti-CD4 and anti-IL-17A antibodies were used along with PD-1 blockade in C57BL/6J mice. KEY RESULTS: Anti-PD-1 treatment led to cardiac dysfunction and left ventricular dilation in C57BL/6J mice, with increased nitrosative stress. Only mild inflammation was observed in the heart. However, PD-1 inhibition resulted in enhanced thymic inflammatory signalling, where Il17a increased most prominently. In BALB/c mice, cardiac dysfunction was not evident, and thymic inflammatory activation was more balanced. Inhibition of IL-17A prevented anti-PD-1-induced cardiac dysfunction in C57BL6/J mice. Comparing myocardial transcriptomic changes in C57BL/6J and BALB/c mice, differentially regulated genes (Dmd, Ass1, Chrm2, Nfkbia, Stat3, Gsk3b, Cxcl9, Fxyd2, and Ldb3) were revealed, related to cardiac structure, signalling, and inflammation. CONCLUSIONS: PD-1 blockade induces cardiac dysfunction in mice with increased IL-17 signalling in the thymus. Pharmacological inhibition of IL-17A treatment prevents ICI-induced cardiac dysfunction.


Asunto(s)
Cardiotoxicidad , Cardiopatías , Ratones , Animales , Cardiotoxicidad/etiología , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Interleucina-17 , Ratones Endogámicos C57BL , Inflamación/complicaciones
11.
Front Immunol ; 13: 967914, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36110849

RESUMEN

MicroRNAs are small non-coding RNAs that have emerged as post-transcriptional regulators involved in development and function of different types of immune cells, and aberrant miRNA expression has often been linked to cancer. One prominent miRNA family in the latter setting is the miR-15 family, consisting of the three clusters miR-15a/16-1, miR-15b/16-2 and miR-497/195, which is best known for its prominent tumor suppressive role in chronic lymphocytic leukemia (CLL). However, little is known about the physiological role of the miR-15 family. In this study, we provide a comprehensive in vivo analysis of the physiological functions of miR-15a/16-1 and miR-15b/16-2, both of which are highly expressed in immune cells, in early B cell development. In particular, we report a previously unrecognized physiological function of the miR-15 family in restraining progenitor B cell expansion, as loss of both clusters induces an increase of the pro-B as well as pre-B cell compartments. Mechanistically, we find that the miR-15 family mediates its function through repression of at least two different types of target genes: First, we confirm that the miR-15 family suppresses several prominent cell cycle regulators such as Ccne1, Ccnd3 and Cdc25a also in vivo, thereby limiting the proliferation of progenitor B cells. Second, this is complemented by direct repression of the Il7r gene, which encodes the alpha chain of the IL-7 receptor (IL7R), one of the most critical growth factor receptors for early B cell development. In consequence, deletion of the miR-15a/16-1 and miR-15b/16-2 clusters stabilizes Il7r transcripts, resulting in enhanced IL7R surface expression. Consistently, our data show an increased activation of PI3K/AKT, a key signaling pathway downstream of the IL7R, which likely drives the progenitor B cell expansion we describe here. Thus, by deregulating a target gene network of cell cycle and signaling mediators, loss of the miR-15 family establishes a pro-proliferative milieu that manifests in an enlarged progenitor B cell pool.


Asunto(s)
MicroARNs , Receptores de Interleucina-7 , Proliferación Celular/genética , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Receptores de Interleucina-7/genética
12.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36145276

RESUMEN

Clinical observations are highly inconsistent with the use of the antidiabetic rosiglitazone regarding its associated increased risk of myocardial infarction. This may be due to its hidden cardiotoxic properties that have only become evident during post-marketing studies. Therefore, we aimed to investigate the hidden cardiotoxicity of rosiglitazone in ischemia/reperfusion (I/R) injury models. Rats were treated orally with either 0.8 mg/kg/day rosiglitazone or vehicle for 28 days and subjected to I/R with or without cardioprotective ischemic preconditioning (IPC). Rosiglitazone did not affect mortality, arrhythmia score, or infarct size during I/R. However, rosiglitazone abolished the antiarrhythmic effects of IPC. To investigate the direct effect of rosiglitazone on cardiomyocytes, we utilized adult rat cardiomyocytes (ARCMs), AC16, and differentiated AC16 (diffAC16) human cardiac cell lines. These were subjected to simulated I/R in the presence of rosiglitazone. Rosiglitazone improved cell survival of ARCMs at 0.3 µM. At 0.1 and 0.3 µM, rosiglitazone improved cell survival of AC16s but not that of diffAC16s. This is the first demonstration that chronic administration of rosiglitazone does not result in major hidden cardiotoxic effects in myocardial I/R injury models. However, the inhibition of the antiarrhythmic effects of IPC may have some clinical relevance that needs to be further explored.

13.
Biomedicines ; 10(7)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35884882

RESUMEN

Dipeptidyl-peptidase-4 (DPP4) inhibitors are novel medicines for diabetes. The SAVOR-TIMI-53 clinical trial revealed increased heart-failure-associated hospitalization in saxagliptin-treated patients. Although this side effect could limit therapeutic use, the mechanism of this potential cardiotoxicity is unclear. We aimed to establish a cellular platform to investigate DPP4 inhibition and the role of its neuropeptide substrates substance P (SP) and neuropeptide Y (NPY), and to determine the expression of DDP4 and its neuropeptide substrates in the human heart. Western blot, radio-, enzyme-linked immuno-, and RNA scope assays were performed to investigate the expression of DPP4 and its substrates in human hearts. Calcein-based viability measurements and scratch assays were used to test the potential toxicity of DPP4 inhibitors. Cardiac expression of DPP4 and NPY decreased in heart failure patients. In human hearts, DPP4 mRNA is detectable mainly in cardiomyocytes and endothelium. Treatment with DPP4 inhibitors alone/in combination with neuropeptides did not affect viability but in scratch assays neuropeptides decreased, while saxagliptin co-administration increased fibroblast migration in isolated neonatal rat cardiomyocyte-fibroblast co-culture. Decreased DPP4 activity takes part in the pathophysiology of end-stage heart failure. DPP4 compensates against the elevated sympathetic activity and altered neuropeptide tone. Its inhibition decreases this adaptive mechanism, thereby exacerbating myocardial damage.

14.
Mol Oncol ; 16(15): 2771-2787, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35673965

RESUMEN

Checkpoint kinase 1 (CHK1; encoded by CHEK1) is an essential gene that monitors DNA replication fidelity and prevents mitotic entry in the presence of under-replicated DNA or exogenous DNA damage. Cancer cells deficient in p53 tumor suppressor function reportedly develop a strong dependency on CHK1 for proper cell cycle progression and maintenance of genome integrity, sparking interest in developing kinase inhibitors. Pharmacological inhibition of CHK1 triggers B-Cell CLL/Lymphoma 2 (BCL2)-regulated cell death in malignant cells largely independently of p53, and has been suggested to kill p53-deficient cancer cells even more effectively. Next to p53 status, our knowledge about factors predicting cancer cell responsiveness to CHK1 inhibitors is limited. Here, we conducted a genome-wide CRISPR/Cas9-based loss-of-function screen to identify genes defining sensitivity to chemical CHK1 inhibitors. Next to the proapoptotic BCL2 family member, BCL2 Binding Component 3 (BBC3; also known as PUMA), the F-box protein S-phase Kinase-Associated Protein 2 (SKP2) was validated to tune the cellular response to CHK1 inhibition. SKP2 is best known for degradation of the Cyclin-dependent Kinase Inhibitor 1B (CDKN1B; also known as p27), thereby promoting G1-S transition and cell cycle progression in response to mitogens. Loss of SKP2 resulted in the predicted increase in p27 protein levels, coinciding with reduced DNA damage upon CHK1-inhibitor treatment and reduced cell death in S-phase. Conversely, overexpression of SKP2, which consequently results in reduced p27 protein levels, enhanced cell death susceptibility to CHK1 inhibition. We propose that assessing SKP2 and p27 expression levels in human malignancies will help to predict the responsiveness to CHK1-inhibitor treatment.


Asunto(s)
Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Proteínas Quinasas Asociadas a Fase-S , Proteína p53 Supresora de Tumor , Muerte Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
15.
Biochem Soc Trans ; 50(2): 813-824, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35343572

RESUMEN

The death fold domain-containing protein PIDD1 has recently attracted renewed attention as a regulator of the orphan cell death-related protease, Caspase-2. Caspase-2 can activate p53 to promote cell cycle arrest in response to centrosome aberrations, and its activation requires formation of the PIDDosome multi-protein complex containing multimers of PIDD1 and the adapter RAIDD/CRADD at its core. However, PIDD1 appears to be able to engage with multiple client proteins to promote an even broader range of biological responses, such as NF-κB activation, translesion DNA synthesis or cell death. PIDD1 shows features of inteins, a class of self-cleaving proteins, to create different polypeptides from a common precursor protein that allow it to serve these diverse functions. This review summarizes structural information and molecular features as well as recent experimental advances that highlight the potential pathophysiological roles of this unique death fold protein to highlight its drug-target potential.


Asunto(s)
Proteína Adaptadora de Señalización CRADD , Caspasa 2 , Apoptosis/fisiología , Proteína Adaptadora de Señalización CRADD/genética , Proteína Adaptadora de Señalización CRADD/metabolismo , Caspasa 2/genética , Caspasa 2/metabolismo , Caspasas/metabolismo , Puntos de Control del Ciclo Celular , Muerte Celular , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/genética , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Humanos , Inflamación
16.
Dig Liver Dis ; 54(2): 207-213, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34344576

RESUMEN

INTRODUCTION: Although efficacy of ustekinumab (UST) has been demonstrated through randomized trials, data from real-life prospective cohorts are still limited. Our aim was to evaluate clinical efficacy, drug sustainability, dose intensification and results from therapeutic drug monitoring in UST treated patients with Crohn's disease (CD) using a prospective, nationwide, multicenter cohort. METHODS: Patients from 10 Inflammatory Bowel Disease centers were enrolled between 2019 January and 2020 May. Patient demographics, disease phenotype, treatment history, clinical disease activity (Crohn's Disease Activity Index(CDAI), Harvey Bradshaw Index(HBI)), biomarkers, and serum drug levels were obtained. Evaluations were performed at week8 (post-induction), w16-20, w32-36, and w52-56 follow-up visits. RESULTS: A total of 142 patients were included [57.4% female; complex disease behavior (B2/B3):48%, previous anti-TNF exposition:97%]. Clinical response and remission rates after induction(w8) were 78.1% and 57.7% using CDAI, and 82.5% and 51.8% based on HBI scores. The one-year clinical remission rate was 58%/57.3%(CDAI/HBI). Composite clinical and biomarker remission (CDAI<150 and C-reactive protein<10 mg/L) rates were 35.4%; 33.3%; 38.6% and 36.6% at w8/w16-20/w32-36 and w52-56. Drug sustainability was 81.9%(standard deviation(SD): 3.4) at 1 year(1y). Probability of dose intensification was high and introduced early, 42.2%(SD:4.2) at ~w32 and 51.9%(SD:4.4%) at 1y. CONCLUSION: Ustekinumab showed favorable drug sustainability and clinical efficacy in a patient population with severe disease phenotype and previous anti-tumor necrosis factor (anti-TNF) failure, however frequent dose intensification was required.


Asunto(s)
Enfermedad de Crohn/tratamiento farmacológico , Monitoreo de Drogas , Ustekinumab/uso terapéutico , Adulto , Biomarcadores Farmacológicos/sangre , Proteína C-Reactiva/análisis , Enfermedad de Crohn/sangre , Femenino , Estudios de Seguimiento , Humanos , Hungría , Masculino , Estudios Prospectivos , Inducción de Remisión , Índice de Severidad de la Enfermedad , Resultado del Tratamiento , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , Ustekinumab/sangre
17.
J Mol Cell Cardiol ; 165: 19-30, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34959166

RESUMEN

BACKGROUND: Cardiac cell lines and primary cells are widely used in cardiovascular research. Despite increasing number of publications using these models, comparative characterization of these cell lines has not been performed, therefore, their limitations are undetermined. We aimed to compare cardiac cell lines to primary cardiomyocytes and to mature cardiac tissues in a systematic manner. METHODS AND RESULTS: Cardiac cell lines (H9C2, AC16, HL-1) were differentiated with widely used protocols. Left ventricular tissue, neonatal primary cardiomyocytes, and human induced pluripotent stem cell-derived cardiomyocytes served as reference tissue or cells. RNA expression of cardiac markers (e.g. Tnnt2, Ryr2) was markedly lower in cell lines compared to references. Differentiation induced increase in cardiac- and decrease in embryonic markers however, the overall transcriptomic profile and annotation to relevant biological processes showed consistently less pronounced cardiac phenotype in all cell lines in comparison to the corresponding references. Immunocytochemistry confirmed low expressions of structural protein sarcomeric alpha-actinin, troponin I and caveolin-3 in cell lines. Susceptibility of cell lines to sI/R injury in terms of viability as well as mitochondrial polarization differed from the primary cells irrespective of their degree of differentiation. CONCLUSION: Expression patterns of cardiomyocyte markers and whole transcriptomic profile, as well as response to sI/R, and to hypertrophic stimuli indicate low-to-moderate similarity of cell lines to primary cells/cardiac tissues regardless their differentiation. Low resemblance of cell lines to mature adult cardiac tissue limits their potential use. Low translational value should be taken into account while choosing a particular cell line to model cardiomyocytes.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Animales , Biomarcadores/metabolismo , Diferenciación Celular/genética , Línea Celular , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Fenotipo , Transcriptoma
18.
J Vis Exp ; (170)2021 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-33938885

RESUMEN

The development of heart failure is the most powerful predictor of long-term mortality in patients surviving acute myocardial infarction (MI). There is an unmet clinical need for prevention and therapy of post-myocardial infarction heart failure (post-MI HF). Clinically relevant pig models of post-MI HF are prerequisites for final proof-of-concept studies before entering into clinical trials in drug and medical device development. Here we aimed to characterize a closed-chest porcine model of post-MI HF in adult Göttingen minipigs with long-term follow-up including serial cardiac magnetic resonance imaging (CMRI) and to compare it with the commonly used Landrace pig model. MI was induced by intraluminal balloon occlusion of the left anterior descending coronary artery for 120 min in Göttingen minipigs and for 90 min in Landrace pigs, followed by reperfusion. CMRI was performed to assess cardiac morphology and function at baseline in both breeds and at 3 and 6 months in Göttingen minipigs and at 2 months in Landrace pigs, respectively. Scar sizes were comparable in the two breeds, but MI resulted in a significant decrease of left ventricular ejection fraction (LVEF) only in Göttingen minipigs, while Landrace pigs did not show a reduction of LVEF. Right ventricular (RV) ejection fraction increased in both breeds despite the negligible RV scar sizes. In contrast to the significant increase of left ventricular end-diastolic (LVED) mass in Landrace pigs at 2 months, Göttingen minipigs showed a slight increase in LVED mass only at 6 months. In summary, this is the first characterization of post-MI HF in Göttingen minipigs in comparison to Landrace pigs, showing that the Göttingen minipig model reflects post-MI HF parameters comparable to the human pathology. We conclude that the Göttingen minipig model is superior to the Landrace pig model to study the development of post-MI HF.


Asunto(s)
Modelos Animales de Enfermedad , Insuficiencia Cardíaca/etiología , Infarto del Miocardio/complicaciones , Animales , Oclusión Coronaria/diagnóstico por imagen , Oclusión Coronaria/fisiopatología , Femenino , Corazón/diagnóstico por imagen , Corazón/fisiopatología , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/fisiopatología , Imagen por Resonancia Magnética , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/fisiopatología , Reperfusión Miocárdica , Daño por Reperfusión Miocárdica/fisiopatología , Porcinos , Porcinos Enanos , Función Ventricular Izquierda
19.
IEEE Control Syst Lett ; 5(5): 1537-1542, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37974600

RESUMEN

We introduce a methodology to guarantee safety against the spread of infectious diseases by viewing epidemiological models as control systems and human interventions (such as quarantining or social distancing) as control input. We consider a generalized compartmental model that represents the form of the most popular epidemiological models and we design safety-critical controllers that formally guarantee safe evolution with respect to keeping certain populations of interest under prescribed safe limits. Furthermore, we discuss how measurement delays originated from incubation period and testing delays affect safety and how delays can be compensated via predictor feedback. We demonstrate our results by synthesizing active intervention policies that bound the number of infections, hospitalizations and deaths for epidemiological models capturing the spread of COVID-19 in the USA.

20.
EMBO Rep ; 21(12): e50893, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33225610

RESUMEN

Polyploidization frequently precedes tumorigenesis but also occurs during normal development in several tissues. Hepatocyte ploidy is controlled by the PIDDosome during development and regeneration. This multi-protein complex is activated by supernumerary centrosomes to induce p53 and restrict proliferation of polyploid cells, otherwise prone for chromosomal instability. PIDDosome deficiency in the liver results in drastically increased polyploidy. To investigate PIDDosome-induced p53-activation in the pathogenesis of liver cancer, we chemically induced hepatocellular carcinoma (HCC) in mice. Strikingly, PIDDosome deficiency reduced tumor number and burden, despite the inability to activate p53 in polyploid cells. Liver tumors arise primarily from cells with low ploidy, indicating an intrinsic pro-tumorigenic effect of PIDDosome-mediated ploidy restriction. These data suggest that hyperpolyploidization caused by PIDDosome deficiency protects from HCC. Moreover, high tumor cell density, as a surrogate marker of low ploidy, predicts poor survival of HCC patients receiving liver transplantation. Together, we show that the PIDDosome is a potential therapeutic target to manipulate hepatocyte polyploidization for HCC prevention and that tumor cell density may serve as a novel prognostic marker for recurrence-free survival in HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Carcinogénesis/genética , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/genética , Ratones , Ploidias , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...