Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Cancer Immunol Res ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874583

RESUMEN

Semaphorin-Plexin signaling plays a major role in the tumor microenvironment (TME). In particular, Semaphorin 4D (SEMA4D) has been shown to promote tumor growth and metastasis; however, the role of its high-affinity receptor Plexin-B1 (PLXNB1), which is expressed in the TME, is poorly understood. In this study, we directly targeted PLXNB1 in the TME of triple-negative murine breast carcinoma to elucidate its relevance in cancer progression. We found that primary tumor growth, and metastatic dissemination were strongly reduced in PLXNB1-deficient mice, which showed longer survival. PLXNB1-loss in the TME induced a switch in the polarization of tumor-associated macrophages (TAMs) towards a pro-inflammatory M1 phenotype and enhanced the infiltration of CD8+ T lymphocytes both in primary tumors and in distant metastases. Moreover, PLXNB1-deficiency promoted a shift in the Th1/Th2 balance of the T-cell population and an antitumor gene signature, with the up-regulation of Icos, Perforin-1, Stat3 and Ccl5 in tumor infiltrating lymphocytes (TILs). We thus tested the translational relevance of TME re-programming driven by PLXNB1 inactivation for responsiveness to immunotherapy. Indeed, in the absence of PLXNB1, the efficacy of anti-PD-1 blockade was strongly enhanced, efficiently reducing tumor growth and distant metastasis. Consistent with this, pharmacological PLXNB1 blockade by systemic treatment with a specific inhibitor significantly hampered breast cancer growth and enhanced the antitumor activity of the anti-PD1 treatment in a preclinical model. Altogether, these data indicate that PLXNB1 signaling controls the antitumor immune response in the TME and highlight this receptor as a promising immune therapeutic target for metastatic breast cancers.

2.
Nucleic Acids Res ; 52(8): 4167-4184, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38324473

RESUMEN

Sam68 and SLM2 are paralog RNA binding proteins (RBPs) expressed in the cerebral cortex and display similar splicing activities. However, their relative functions during cortical development are unknown. We found that these RBPs exhibit an opposite expression pattern during development. Sam68 expression declines postnatally while SLM2 increases after birth, and this developmental pattern is reinforced by hierarchical control of Sam68 expression by SLM2. Analysis of Sam68:Slm2 double knockout (Sam68:Slm2dko) mice revealed hundreds of exons that respond to joint depletion of these proteins. Moreover, parallel analysis of single and double knockout cortices indicated that exons regulated mainly by SLM2 are characterized by a dynamic splicing pattern during development, whereas Sam68-dependent exons are spliced at relatively constant rates. Dynamic splicing of SLM2-sensitive exons is completely suppressed in the Sam68:Slm2dko developing cortex. Sam68:Slm2dko mice die perinatally with defects in neurogenesis and in neuronal differentiation, and develop a hydrocephalus, consistent with splicing alterations in genes related to these biological processes. Thus, our study reveals that developmental control of separate Sam68 and Slm2 paralog genes encoding homologous RBPs enables the orchestration of a dynamic splicing program needed for brain development and viability, while ensuring a robust redundant mechanism that supports proper cortical development.


Asunto(s)
Corteza Cerebral , Empalme del ARN , Proteínas de Unión al ARN , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Corteza Cerebral/metabolismo , Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Exones/genética , Regulación del Desarrollo de la Expresión Génica , Ratones Noqueados , Neurogénesis/genética , Neuronas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
4.
Aging Dis ; 15(2): 517-534, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37728580

RESUMEN

Skeletal muscle is characterized by a remarkable capacity to rearrange after physiological changes and efficiently regenerate. However, during aging, extensive injury, or pathological conditions, the complete regenerative program is severely affected, with a progressive loss of muscle mass and function, a condition known as sarcopenia. The compromised tissue repair program is attributable to the gradual depletion of stem cells and to altered regulatory signals. Defective muscle regeneration can severely affect re-innervation by motor axons, and neuromuscular junctions (NMJs) development, ultimately leading to skeletal muscle atrophy. Defects in NMJ formation and maintenance occur physiologically during aging and are responsible for the pathogenesis of several neuromuscular disorders. However, it is still largely unknown how neuromuscular connections are restored on regenerating fibers. It has been suggested that attractive and repelling signals used for axon guidance could be implicated in this process; in particular, guidance molecules called semaphorins play a key role. Semaphorins are a wide family of extracellular regulatory signals with a multifaceted role in cell-cell communication. Originally discovered as axon guidance factors, they have been implicated in cancer progression, embryonal organogenesis, skeletal muscle innervation, and other physiological and developmental functions in different tissues. In particular, in skeletal muscle, specific semaphorin molecules are involved in the restoration and remodeling of the nerve-muscle connections, thus emphasizing their plausible role to ensure the success of muscle regeneration. This review article aims to discuss the impact of aging on skeletal muscle regeneration and NMJs remodeling and will highlight the most recent insights about the role of semaphorins in this context.


Asunto(s)
Sarcopenia , Semaforinas , Humanos , Unión Neuromuscular/patología , Músculo Esquelético/patología , Axones/patología , Sarcopenia/patología
5.
J Exp Clin Cancer Res ; 42(1): 223, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37653435

RESUMEN

BACKGROUND: Acute myeloid leukemia (AML) patients bearing the ITD mutation in the tyrosine kinase receptor FLT3 (FLT3-ITD) present a poor prognosis and a high risk of relapse. FLT3-ITD is retained in the endoplasmic reticulum (ER) and generates intrinsic proteotoxic stress. We devised a strategy based on proteotoxic stress, generated by the combination of low doses of the differentiating agent retinoic acid (R), the proteasome inhibitor bortezomib (B), and the oxidative stress inducer arsenic trioxide (A). METHODS: We treated FLT3-ITD+ AML cells with low doses of the aforementioned drugs, used alone or in combinations and we investigated the induction of ER and oxidative stress. We then performed the same experiments in an in vitro co-culture system of FLT3-ITD+ AML cells and bone marrow stromal cells (BMSCs) to assess the protective role of the niche on AML blasts. Eventually, we tested the combination of drugs in an orthotopic murine model of human AML. RESULTS: The combination RBA exerts strong cytotoxic activity on FLT3-ITD+ AML cell lines and primary blasts isolated from patients, due to ER homeostasis imbalance and generation of oxidative stress. AML cells become completely resistant to the combination RBA when treated in co-culture with BMSCs. Nonetheless, we could overcome such protective effects by using high doses of ascorbic acid (Vitamin C) as an adjuvant. Importantly, the combination RBA plus ascorbic acid significantly prolongs the life span of a murine model of human FLT3-ITD+ AML without toxic effects. Furthermore, we show for the first time that the cross-talk between AML and BMSCs upon treatment involves disruption of the actin cytoskeleton and the actin cap, increased thickness of the nuclei, and relocalization of the transcriptional co-regulator YAP in the cytosol of the BMSCs. CONCLUSIONS: Our findings strengthen our previous work indicating induction of proteotoxic stress as a possible strategy in FLT3-ITD+ AML therapy and open to the possibility of identifying new therapeutic targets in the crosstalk between AML and BMSCs, involving mechanotransduction and YAP signaling.


Asunto(s)
Citoprotección , Tretinoina , Humanos , Animales , Ratones , Tretinoina/farmacología , Modelos Animales de Enfermedad , Mecanotransducción Celular , Estrés Proteotóxico , Ácido Ascórbico , Muerte Celular
6.
Trends Mol Med ; 29(10): 817-829, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37598000

RESUMEN

Pancreatic cancer is a major cause of demise worldwide. Although key associated genetic changes have been discovered, disease progression is sustained by pathogenic mechanisms that are poorly understood at the molecular level. In particular, the tissue microenvironment of pancreatic adenocarcinoma (PDAC) is usually characterized by high stromal content, scarce recruitment of immune cells, and the presence of neuronal fibers. Semaphorins and their receptors, plexins and neuropilins, comprise a wide family of regulatory signals that control neurons, endothelial and immune cells, embryo development, and normal tissue homeostasis, as well as the microenvironment of human tumors. We focus on the role of these molecular signals in pancreatic cancer progression, as revealed by experimental research and clinical studies, including novel approaches for cancer treatment.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Semaforinas , Humanos , Neuropilinas , Microambiente Tumoral , Neoplasias Pancreáticas
7.
Cell Rep Med ; 4(8): 101142, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37557179

RESUMEN

EGFR-specific tyrosine kinase inhibitors (TKIs), especially osimertinib, have changed lung cancer therapy, but secondary mutations confer drug resistance. Because other EGFR mutations promote dimerization-independent active conformations but L858R strictly depends on receptor dimerization, we herein evaluate the therapeutic potential of dimerization-inhibitory monoclonal antibodies (mAbs), including cetuximab. This mAb reduces viability of cells expressing L858R-EGFR and blocks the FOXM1-aurora survival pathway, but other mutants show no responses. Unlike TKI-treated patient-derived xenografts, which relapse post osimertinib treatment, cetuximab completely prevents relapses of L858R+ tumors. We report that osimertinib's inferiority associates with induction of mutagenic reactive oxygen species, whereas cetuximab's superiority is due to downregulation of adaptive survival pathways (e.g., HER2) and avoidance of mutation-prone mechanisms that engage AXL, RAD18, and the proliferating cell nuclear antigen. These results identify L858R as a predictive biomarker, which may pave the way for relapse-free mAb monotherapy relevant to a large fraction of patients with lung cancer.


Asunto(s)
Receptores ErbB , Neoplasias Pulmonares , Humanos , Cetuximab/farmacología , Cetuximab/uso terapéutico , Receptores ErbB/genética , Inhibidores de Proteínas Quinasas/farmacología , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Anticuerpos Monoclonales/uso terapéutico , Biomarcadores , Proteínas de Unión al ADN , Ubiquitina-Proteína Ligasas
8.
Cell Mol Life Sci ; 80(8): 202, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37442828

RESUMEN

The epidermal growth factor receptor (EGFR) is one of the main tumor drivers and is an important therapeutic target for many cancers. Calcium is important in EGFR signaling pathways. Sorcin is one of the most important calcium sensor proteins, overexpressed in many tumors, that promotes cell proliferation, migration, invasion, epithelial-to-mesenchymal transition, malignant progression and resistance to chemotherapeutic drugs. The present work elucidates a functional mechanism that links calcium homeostasis to EGFR signaling in cancer. Sorcin and EGFR expression are significantly correlated and associated with reduced overall survival in cancer patients. Mechanistically, Sorcin directly binds EGFR protein in a calcium-dependent fashion and regulates calcium (dys)homeostasis linked to EGF-dependent EGFR signaling. Moreover, Sorcin controls EGFR proteostasis and signaling and increases its phosphorylation, leading to increased EGF-dependent migration and invasion. Of note, silencing of Sorcin cooperates with EGFR inhibitors in the regulation of migration, highlighting calcium signaling pathway as an exploitable target to enhance the effectiveness of EGFR-targeting therapies.


Asunto(s)
Factor de Crecimiento Epidérmico , Neoplasias , Humanos , Factor de Crecimiento Epidérmico/farmacología , Factor de Crecimiento Epidérmico/metabolismo , Calcio , Transducción de Señal , Receptores ErbB/genética , Receptores ErbB/metabolismo , Línea Celular Tumoral , Movimiento Celular
9.
J Neurooncol ; 163(2): 301-311, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37231231

RESUMEN

BACKGROUND: Serum albumin has been demonstrated as prognostic parameter in non-Hodgkin lymphoma (NHL). Primary central nervous system lymphoma (PCNSL) is a rare extranodal NHL with highly aggressive behavior. In this study, we aimed at creating a novel prognostic model for PCNSL based on serum albumin levels. METHODS: We compared several commonly used laboratory nutritional parameters for predicting the survival of PCNSL patients using overall survival (OS) for outcome analysis and receiver operating characteristic curve analysis to determine the optimal cut-off values. Parameters associated with OS were evaluated by univariate and multivariate analyses. Independent prognostic parameters for OS were selected for risk stratification, including albumin ≤ 4.1 g/dL, ECOG PS > 1, and LLR > 166.8, which were associated with shorter OS; albumin > 4.1 g/dL, ECOG PS 0-1 and LLR ≤ 166.8, which were associated with longer OS, and five-fold cross-validation was used for evaluating predictive accuracy of identified prognostic model. RESULTS: By univariate analysis, age, ECOG PS, MSKCC score, Lactate dehydrogenase-to-lymphocyte ratio (LLR), total protein, albumin, hemoglobin, and albumin to globulin ratio (AGR) resulted statistically associated with the OS of PCNSL. By multivariate analysis, albumin ≤ 4.1 g/dL, ECOG PS > 1, and LLR > 166.8 were confirmed to be significant predictors of inferior OS. We explored several PCNSL prognostic models based on albumin, ECOG PS and LLR with 1 point assigned to each parameter. Eventually, a novel and effective PCNSL prognostic model based on albumin and ECOG PS successfully classified patients into three risk groups with 5-year survival rates of 47.5%, 36.9%, and 11.9%, respectively. CONCLUSIONS: The novel two-factor prognostic model based on albumin and ECOG PS we propose represents a simple but significant prognostic tool for assessing newly diagnosed patients with PCNSL.


Asunto(s)
Linfoma no Hodgkin , Albúmina Sérica , Humanos , Pronóstico , Albúmina Sérica/metabolismo , Linfoma no Hodgkin/diagnóstico , Linfoma no Hodgkin/terapia , Linfocitos , Estudios Retrospectivos
10.
Cell Mol Life Sci ; 80(4): 111, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37002363

RESUMEN

Transmembrane semaphorins are signaling molecules, controlling axonal wiring and embryo development, which are increasingly implicated in human diseases. Semaphorin 6C (Sema6C) is a poorly understood family member and its functional role is still unclear. Upon targeting Sema6C expression in a range of cancer cells, we observed dramatic growth suppression, decreased ERK phosphorylation, upregulation of cell cycle inhibitor proteins p21, p27 and p53, and the onset of cell senescence, associated with activation of autophagy. These data are consistent with a fundamental requirement for Sema6C to support viability and growth in cancer cells. Mechanistically, we unveiled a novel signaling pathway elicited by Sema6C, and dependent on its intracellular domain, mediated by tyrosine kinases c-Abl and Focal Adhesion Kinase (FAK). Sema6C was found in complex with c-Abl, and induced its phosphorylation, which in turn led to FAK activation, independent of cell-matrix adhesion. Sema6C-induced FAK activity was furthermore responsible for increased nuclear localization of YAP transcriptional regulator. Moreover, Sema6C conferred YAP signaling-dependent long-term cancer cell survival upon nutrient deprivation. In conclusion, our findings demonstrate that Sema6C elicits a cancer promoting-signaling pathway sustaining cell viability and self-renewal, independent of growth factors and nutrients availability.


Asunto(s)
Neoplasias , Transducción de Señal , Humanos , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Supervivencia Celular , Quinasa 1 de Adhesión Focal/genética , Quinasa 1 de Adhesión Focal/metabolismo , Fosforilación , Proteínas de Ciclo Celular/metabolismo , Neoplasias/genética
11.
EMBO Mol Med ; 15(3): e16104, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36722641

RESUMEN

The genetic changes sustaining the development of cancers of unknown primary (CUP) remain elusive. The whole-exome genomic profiling of 14 rigorously selected CUP samples did not reveal specific recurring mutation in known driver genes. However, by comparing the mutational landscape of CUPs with that of most other human tumor types, it emerged a consistent enrichment of changes in genes belonging to the axon guidance KEGG pathway. In particular, G842C mutation of PlexinB2 (PlxnB2) was predicted to be activating. Indeed, knocking down the mutated, but not the wild-type, PlxnB2 in CUP stem cells resulted in the impairment of self-renewal and proliferation in culture, as well as tumorigenic capacity in mice. Conversely, the genetic transfer of G842C-PlxnB2 was sufficient to promote CUP stem cell proliferation and tumorigenesis in mice. Notably, G842C-PlxnB2 expression in CUP cells was associated with basal EGFR phosphorylation, and EGFR blockade impaired the viability of CUP cells reliant on the mutated receptor. Moreover, the mutated PlxnB2 elicited CUP cell invasiveness, blocked by EGFR inhibitor treatment. In sum, we found that a novel activating mutation of the axon guidance gene PLXNB2 sustains proliferative autonomy and confers invasive properties to stem cells isolated from cancers of unknown primary, in EGFR-dependent manner.


Asunto(s)
Neoplasias Primarias Desconocidas , Células Madre Neoplásicas , Proteínas del Tejido Nervioso , Animales , Humanos , Ratones , Orientación del Axón , Receptores ErbB/genética , Mutación , Recurrencia Local de Neoplasia , Neoplasias Primarias Desconocidas/genética , Proteínas del Tejido Nervioso/genética , Células Madre Neoplásicas/patología
12.
Antioxidants (Basel) ; 11(5)2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35624880

RESUMEN

Sarcopenia, which occurs during aging, is characterized by the gradual loss of skeletal muscle mass and function, resulting in a functional decline in physical abilities. Several factors contribute to the onset of sarcopenia, including reduced regenerative capacity, chronic low-grade inflammation, mitochondrial dysfunction, and increased oxidative stress, leading to the activation of catabolic pathways. Physical activity and adequate protein intake are considered effective strategies able to reduce the incidence and severity of sarcopenia by exerting beneficial effects in improving the muscular anabolic response during aging. Taurine is a non-essential amino acid that is highly expressed in mammalian tissues and, particularly, in skeletal muscle where it is involved in the regulation of biological processes and where it acts as an antioxidant and anti-inflammatory factor. Here, we evaluated whether taurine administration in old mice counteracts the physiopathological effects of aging in skeletal muscle. We showed that, in injured muscle, taurine enhances the regenerative process by downregulating the inflammatory response and preserving muscle fiber integrity. Moreover, taurine attenuates ROS production in aged muscles by maintaining a proper cellular redox balance, acting as an antioxidant molecule. Although further studies are needed to better elucidate the molecular mechanisms responsible for the beneficial effect of taurine on skeletal muscle homeostasis, these data demonstrate that taurine administration ameliorates the microenvironment allowing an efficient regenerative process and attenuation of the catabolic pathways related to the onset of sarcopenia.

13.
Cancers (Basel) ; 14(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35454836

RESUMEN

The endothelium is the innermost layer of all blood and lymphatic vessels composed of a monolayer of specialized endothelial cells (ECs). It is regarded as a dynamic and multifunctional endocrine organ that takes part in essential processes, such as the control of blood fluidity, the modulation of vascular tone, the regulation of immune response and leukocyte trafficking into perivascular tissues, and angiogenesis. The inability of ECs to perform their normal biological functions, known as endothelial dysfunction, is multi-factorial; for instance, it implicates the failure of ECs to support the normal antithrombotic and anti-inflammatory status, resulting in the onset of unfavorable cardiovascular conditions such as atherosclerosis, coronary artery disease, hypertension, heart problems, and other vascular pathologies. Notably, it is emerging that the ability of ECs to adapt their metabolic status to persistent changes of the tissue microenvironment could be vital for the maintenance of vascular functions and to prevent adverse vascular events. The main purpose of the present article is to shed light on the unique metabolic plasticity of ECs as a prospective therapeutic target; this may lead to the development of novel strategies for cardiovascular diseases and cancer.

14.
Cancers (Basel) ; 14(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35454874

RESUMEN

Intercellular communication is a key biological mechanism that is fundamental to maintain tissue homeostasis. Extracellular vesicles (EVs) have emerged as critical regulators of cell-cell communication in both physiological and pathological conditions, due to their ability to shuttle a variety of cell constituents, such as DNA, RNA, lipids, active metabolites, cytosolic, and cell surface proteins. In particular, endothelial cells (ECs) are prominently regulated by EVs released by neighboring cell types. The discovery that cancer cell-derived EVs can control the functions of ECs has prompted the investigation of their roles in tumor angiogenesis and cancer progression. In particular, here, we discuss evidence that supports the roles of exosomes in EC regulation within the tumor microenvironment and in vascular dysfunction leading to atherosclerosis. Moreover, we survey the molecular mechanisms and exosomal cargoes that have been implicated in explanations of these regulatory effects.

15.
Cancer Immunol Res ; 10(1): 126-141, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34815265

RESUMEN

Cytotoxic T cell (CTL) infiltration of the tumor carries the potential to limit cancer progression, but their exclusion by the immunosuppressive tumor microenvironment hampers the efficiency of immunotherapy. Here, we show that expression of the axon guidance molecule Plexin-A4 (Plxna4) in CTLs, especially in effector/memory CD8+ T cells, is induced upon T-cell activation, sustained in the circulation, but reduced when entering the tumor bed. Therefore, we deleted Plxna4 and observed that Plxna4-deficient CTLs acquired improved homing capacity to the lymph nodes and to the tumor, as well as increased proliferation, both achieved through enhanced Rac1 activation. Mice with stromal or hematopoietic Plxna4 deletion exhibited enhanced CTL infiltration and impaired tumor growth. In a melanoma model, adoptive transfer of CTLs lacking Plxna4 prolonged survival and improved therapeutic outcome, which was even stronger when combined with anti-programmed cell death protein 1 (PD-1) treatment. PLXNA4 abundance in circulating CTLs was augmented in melanoma patients versus healthy volunteers but decreased after the first cycle of anti-PD-1, alone or in combination with anti-cytotoxic T-Lymphocyte Associated Protein 4 (CTLA-4), in those patients showing complete or partial response to the treatment. Altogether, our data suggest that Plxna4 acts as a "checkpoint," negatively regulating CTL migration and proliferation through cell-autonomous mechanisms independent of the interaction with host-derived Plxna4 ligands, semaphorins. These findings pave the way toward Plxna4-centric immunotherapies and propose Plxna4 detection in circulating CTLs as a potential way to monitor the response to immune checkpoint blockade in patients with metastatic melanoma.


Asunto(s)
Inmunoterapia/métodos , Neoplasias Pulmonares/terapia , Melanoma Experimental/terapia , Proteínas del Tejido Nervioso/farmacología , Linfocitos T Citotóxicos/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Activación de Linfocitos , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Receptor de Muerte Celular Programada 1/inmunología , Receptores de Superficie Celular/genética , Microambiente Tumoral/inmunología
16.
J Cell Biol ; 220(11)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34581723

RESUMEN

Dynamic modulation of endothelial cell-to-cell and cell-to-extracellular matrix (ECM) adhesion is essential for blood vessel patterning and functioning. Yet the molecular mechanisms involved in this process have not been completely deciphered. We identify the adhesion G protein-coupled receptor (ADGR) Latrophilin 2 (LPHN2) as a novel determinant of endothelial cell (EC) adhesion and barrier function. In cultured ECs, endogenous LPHN2 localizes at ECM contacts, signals through cAMP/Rap1, and inhibits focal adhesion (FA) formation and nuclear localization of YAP/TAZ transcriptional regulators, while promoting tight junction (TJ) assembly. ECs also express an endogenous LPHN2 ligand, fibronectin leucine-rich transmembrane 2 (FLRT2), that prevents ECM-elicited EC behaviors in an LPHN2-dependent manner. Vascular ECs of lphn2a knock-out zebrafish embryos become abnormally stretched, display a hyperactive YAP/TAZ pathway, and lack proper intercellular TJs. Consistently, blood vessels are hyperpermeable, and intravascularly injected cancer cells extravasate more easily in lphn2a null animals. Thus, LPHN2 ligands, such as FLRT2, may be therapeutically exploited to interfere with cancer metastatic dissemination.


Asunto(s)
Permeabilidad Capilar/fisiología , Adhesión Celular/fisiología , Endotelio Vascular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Animales Modificados Genéticamente , Células COS , Línea Celular , Núcleo Celular/metabolismo , Chlorocebus aethiops , Matriz Extracelular/metabolismo , Células HEK293 , Humanos , Transducción de Señal/fisiología , Transactivadores/metabolismo , Pez Cebra
17.
Front Oncol ; 11: 696147, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34422649

RESUMEN

BACKGROUND: Primary central nervous system lymphoma (PCNSL) is a highly aggressive and rare extranodal non-Hodgkin lymphoma (NHL). The MSKCC and the IELSG scores represent the most widely used prognostic models, but many changes have occurred in therapeutic protocols since their development. Moreover, many PCNSL patients cannot be classified using the IELSG score. We thus aimed to create a novel, effective and feasible prognostic model for PCNSL. METHODS: We included 248 PCNSL patients diagnosed with PCNSL. Our primary endpoint was the overall survival (OS) and we used the receiver operating characteristic (ROC) analysis to determine the optimal prognostic cut-off value for LLR (lactate dehydrogenase-to-lymphocyte ratio), neutrophil-to-lymphocyte ratio (NLR) and derived neutrophil-to-lymphocyte ratio (dNLR). Variable associated with OS were evaluated by univariate and multivariate analyses. 124 out of 248 patients were randomly selected as the internal validation cohort. RESULTS: By univariate analysis, an age >60 years, Eastern Cooperative Oncology Group performance status (ECOG PS) >1, treatment with radiotherapy alone, high-risk groups of Memorial Sloan Kettering Cancer Center (MSKCC) score, NLR >4.74, dNLR >3.29, and LLR >166.8 were significantly associated with a worse OS. By multivariate analysis, the MSKCC score and LLR were confirmed as independent prognostic parameters for poorer OS. OS, however, was not significantly different between low- and intermediate-risk groups according to the MSKCC score, while LLR proved to be prognostically relevant and was thus used to develop a novel, effective three-tier PCNSL scoring system. Of 124 patients, 84 patients with survival data and LLR data were successfully validated by newly established PCNSL LLR scoring system. CONCLUSIONS: In the present study, we demonstrate that a high LLR represents an independent unfavorable prognostic parameter in PCNSL patients which can be integrated into an effective prognostic model.

18.
Cancers (Basel) ; 13(15)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34359721

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) includes a group of aggressive malignancies characterized by the overexpression of the epidermal growth factor receptor (EGFR) in 90% of cases. Neuropilin-1 (NRP-1) acts as an EGFR co-receptor, enhancing, upon ligand stimulation, EGFR signaling in several cellular models. However, NRP-1 remains poorly characterized in HNSCC. By utilizing in vitro cellular models of HNSCC, we report that NRP-1 is involved in the regulation of EGFR signaling. In fact, NRP-1 can lead to cisplatin-induced EGFR phosphorylation, an escape mechanism activated by cancer cells upon cytotoxic stress. Furthermore, we evaluated Neuropilin-1 staining in tissue samples of an HNSCC case series (n = 218), unraveling a prognostic value for the Neuropilin-1 tissue expression. These data suggest a potential role for NRP-1 in HNSCC cancer progression, expanding the repertoire of signaling in which NRP-1 is involved and eliciting the need for further investigations on NRP-1 as a suitable target for HNSCC novel therapeutic approaches.

19.
Aging (Albany NY) ; 13(8): 11833-11859, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33885377

RESUMEN

Transcriptome differences between Hodgkin's lymphoma (HL), diffuse large B-cell lymphoma (DLBCL), and mantle cell lymphoma (MCL), which are all derived from B cell, remained unclear. This study aimed to construct lymphoma-specific diagnostic models by screening lymphoma marker genes. Transcriptome data of HL, DLBCL, and MCL were obtained from public databases. Lymphoma marker genes were screened by comparing cases and controls as well as the intergroup differences among lymphomas. A total of 9 HL marker genes, 7 DLBCL marker genes, and 4 MCL marker genes were screened in this study. Most HL marker genes were upregulated, whereas DLBCL and MCL marker genes were downregulated compared to controls. The optimal HL-specific diagnostic model contains one marker gene (MYH2) with an AUC of 0.901. The optimal DLBCL-specific diagnostic model contains 7 marker genes (LIPF, CCDC144B, PRO2964, PHF1, SFTPA2, NTS, and HP) with an AUC of 0.951. The optimal MCL-specific diagnostic model contains 3 marker genes (IGLV3-19, IGKV4-1, and PRB3) with an AUC of 0.843. The present study reveals the transcriptome data-based differences between HL, DLBCL, and MCL, when combined with other clinical markers, may help the clinical diagnosis and prognosis.


Asunto(s)
Biomarcadores de Tumor/genética , Enfermedad de Hodgkin/diagnóstico , Linfoma de Células B Grandes Difuso/diagnóstico , Linfoma de Células del Manto/diagnóstico , Modelos Genéticos , Estudios de Casos y Controles , Conjuntos de Datos como Asunto , Diagnóstico Diferencial , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Enfermedad de Hodgkin/genética , Enfermedad de Hodgkin/mortalidad , Humanos , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/mortalidad , Linfoma de Células del Manto/genética , Linfoma de Células del Manto/mortalidad , Estadificación de Neoplasias , Pronóstico , Supervivencia sin Progresión , Transcriptoma/genética
20.
Aging (Albany NY) ; 13(5): 6554-6564, 2021 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-33675585

RESUMEN

The prognosis of melanoma patients is highly variable due to multiple factors conditioning immune response and driving metastatic progression. In this study, we have correlated the expression of immune-related lncRNAs with patient survival, developed a prognostic model, and investigated the characteristics of immune response in the diverse groups. The gene expression profiles and prognostic information of 470 melanoma patients were downloaded from TCGA database. Significantly predictive lncRNAs were identified by multivariate Cox regression analyses, and a prognostic model based on these variables was constructed to predict survival. Kaplan-Meier curves were plotted to estimate overall survival. The predictive accuracy of the model was evaluated by the area under the ROC curve (AUC). Principal component analysis was used to observe the distribution of immune-related genes. CIBERSORT and ESTIMATE were used to evaluate the composition of immune cells and the immune microenvironment. Eight immune-related lncRNAs were determined to be prognostic by multivariate COX regression analysis. The patient scores were calculated and divided into high- and low-risk groups. The model could effectively predict the prognosis in patients of different stages. The AUC of the model is 0.784, which was significantly higher than that of the other variables. There were significant differences in the distribution of immune-related genes between two groups; the immune score and immune function enrichment score were higher in the low risk group.


Asunto(s)
Melanoma/genética , Modelos Genéticos , ARN Largo no Codificante , Neoplasias Cutáneas/mortalidad , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Melanoma/inmunología , Melanoma/mortalidad , Persona de Mediana Edad , Pronóstico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/inmunología , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...