Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Sci ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38923173

RESUMEN

Our study highlights the discovery of recurrent copy number alterations in noncoding regions, specifically blood enhancer cluster (BENC-CNA), in B-precursor acute lymphoblastic leukemia (BCP-ALL) cell lines. We demonstrate that BENC-CNA acts as a super-enhancer, driving MYC expression and possibly contributing to the immortalization and proliferative advantage of BCP-ALL cells in vitro.

2.
Cancer Rep (Hoboken) ; 7(4): e2034, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38577721

RESUMEN

BACKGROUND: Adhesion of cancer cells to extracellular matrix laminin through the integrin superfamily reportedly induces drug resistance. Heterodimers of integrin α6 (CD49f) with integrin ß1 (CD29) or ß4 (CD104) are major functional receptors for laminin. Higher CD49f expression is reportedly associated with a poorer response to induction therapy in childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Moreover, a xenograft mouse model transplanted with primary BCP-ALL cells revealed that neutralized antibody against CD49f improved survival after chemotherapy. AIMS: Considering the poor outcomes in Philadelphia chromosome (Ph)-positive ALL treated with conventional chemotherapy without tyrosine kinase inhibitors, we sought to investigate an involvement of the laminin adhesion. METHODS AND RESULTS: Ph-positive ALL cell lines expressed the highest levels of CD49f among the BCP-ALL cell lines with representative translocations, while CD29 and CD104 were ubiquitously expressed in BCP-ALL cell lines. The association of Ph-positive ALL with high levels of CD49f gene expression was also confirmed in two databases of childhood ALL cohorts. Ph-positive ALL cell lines attached to laminin and their laminin-binding properties were disrupted by blocking antibodies against CD49f and CD29 but not CD104. The cell surface expression of CD49f, but not CD29 and CD104, was downregulated by imatinib treatment in Ph-positive ALL cell lines, but not in their T315I-acquired sublines. Consistently, the laminin-binding properties were disrupted by the imatinib pre-treatment in the Ph-positive ALL cell line, but not in its T315I-acquired subline. CONCLUSION: BCR::ABL1 plays an essential role in the laminin adhesion of Ph-positive ALL cells through upregulation of CD49f.


Asunto(s)
Integrina alfa6 , Laminina , Leucemia-Linfoma Linfoblástico de Células Precursoras , Regulación hacia Arriba , Animales , Humanos , Ratones , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Integrina alfa6/genética , Laminina/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
3.
Cancer Sci ; 115(6): 1924-1935, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38549229

RESUMEN

In childhood acute lymphoblastic leukemia (ALL), TP53 gene mutation is associated with chemoresistance in a certain population of relapsed cases. To directly verify the association of TP53 gene mutation with chemoresistance of relapsed childhood ALL cases and improve their prognosis, the development of appropriate human leukemia models having TP53 mutation in the intrinsic gene is required. Here, we sought to introduce R248Q hotspot mutation into the intrinsic TP53 gene in an ALL cell line, 697, by applying a prime editing (PE) system, which is a versatile genome editing technology. The PE2 system uses an artificial fusion of nickase Cas9 and reverse-transcriptase to directly place new genetic information into a target site through a reverse transcriptase template in the prime editing guide RNA (pegRNA). Moreover, in the advanced PE3b system, single guide RNA (sgRNA) matching the edited sequence is also introduced to improve editing efficiency. The initially obtained MDM2 inhibitor-resistant PE3b-transfected subline revealed disrupted p53 transactivation activity, reduced p53 target gene expression, and acquired resistance to chemotherapeutic agents and irradiation. Although the majority of the subline acquired the designed R248Q and adjacent silent mutations, the insertion of the palindromic sequence in the scaffold hairpin structure of pegRNA and the overlap of the original genomic DNA sequence were frequently observed. Targeted next-generation sequencing reconfirmed frequent edit errors in both PE2 and PE3b-transfected 697 cells, and it revealed frequent successful edits in HEK293T cells. These observations suggest a requirement for further modification of the PE2 and PE3b systems for accurate editing in leukemic cells.


Asunto(s)
Edición Génica , Mutación , Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/genética , Edición Génica/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas/genética , Proteínas Proto-Oncogénicas c-mdm2/genética
5.
Epigenetics ; 18(1): 2268814, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37839090

RESUMEN

Asparaginase is an important agent for the treatment of acute lymphoblastic leukaemia (ALL), but it is occasionally associated with severe adverse events. Thus, for safer and more efficacious therapy, a clinical biomarker predicting asparaginase sensitivity is highly anticipated. Asparaginase depletes serum asparagine by deaminating asparagine into aspartic acid, and ALL cells are thought to be sensitive to asparaginase due to reduced asparagine synthetase (ASNS) activity. We have recently shown that allele-specific methylation of the ASNS gene is highly involved in asparaginase sensitivity in B-precursor ALL (BCP-ALL) by using next-generation sequence (NGS) analysis of bisulphite PCR products of the genomic DNA. Here, we sought to confirm the utility of methylation status of the ASNS gene evaluated with high-performance liquid chromatography (HPLC) analysis of bisulphite PCR products for future clinical applications. In the global methylation status of 23 CpG sites at the boundary region of promoter and exon 1 of the ASNS gene, a strong positive correlation was confirmed between the mean percent methylation evaluated with the HPLC method and that with the NGS method in 79 BCP-ALL cell lines (R2 = 0.85, p = 1.3 × 10-33) and in 63 BCP-ALL clinical samples (R2 = 0.84, p = 5.0 × 10-26). Moreover, methylation status of the ASNS gene evaluated with the HPLC method was significantly associated with in vitro asparaginase sensitivities as well as gene and protein expression levels of ASNS. These observations indicated that the ASNS gene methylation status evaluated with the HPLC method is a reliable biomarker for predicting the asparaginase sensitivity of BCP-ALL.


Asunto(s)
Aspartatoamoníaco Ligasa , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Asparaginasa/genética , Asparaginasa/metabolismo , Asparaginasa/uso terapéutico , Asparagina/genética , Asparagina/metabolismo , Asparagina/uso terapéutico , Aspartatoamoníaco Ligasa/genética , Aspartatoamoníaco Ligasa/metabolismo , Cromatografía Líquida de Alta Presión , Farmacogenética , Metilación de ADN , Línea Celular Tumoral , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
8.
Mol Pharmacol ; 103(4): 199-210, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36669880

RESUMEN

6-Mercaptopurine (6-MP) is a key component in maintenance therapy for childhood acute lymphoblastic leukemia (ALL). Recent next-generation sequencing analysis of childhood ALL clarified the emergence of the relapse-specific mutations of the NT5C2 and PRPS1 genes, which are involved in thiopurine metabolism. In this scenario, minor clones of leukemia cells could acquire the 6-MP-resistant phenotype as a result of the NT5C2 or PRPS1 mutation during chemotherapy (including 6-MP treatment) and confer disease relapse after selective expansion. Thus, to establish new therapeutic modalities overcoming 6-MP resistance in relapsed ALL, human leukemia models with NT5C2 and PRPS1 mutations in the intrinsic genes are urgently required. Here, mimicking the initiation process of the above clinical course, we sought to induce two relapse-specific hotspot mutations (R39Q mutation of the NT5C2 gene and S103N mutation of the PRPS1 gene) into a human lymphoid leukemia cell line by homologous recombination (HR) using the CRISPR/Cas9 system. After 6-MP selection of the cells transfected with Cas9 combined with single-guide RNA and donor DNA templates specific for either of those two mutations, we obtained the sublines with the intended NT5C2-R39Q and PRPS1-S103N mutation as a result of HR. Moreover, diverse in-frame small insertion/deletions were also confirmed in the 6-MP-resistant sublines at the target sites of the NT5C2 and PRPS1 genes as a result of nonhomologous end joining. These sublines are useful for molecular pharmacological evaluation of the NT5C2 and PRPS1 gene mutations in the 6-MP sensitivity and development of therapy overcoming the thiopurine resistance of leukemia cells. SIGNIFICANCE STATEMENT: Mimicking the initiation process of relapse-specific mutations of the NT5C2 and PRPS1 genes in childhood acute lymphoblastic leukemia treated with 6-mercaptopurine (6-MP), this study sought to introduce NT5C2-R39Q and PRPS1-S103N mutations into a human lymphoid leukemia cell line by homologous recombination using the CRISPR/Cas9 system. In the resultant 6-MP-resistant sublines, the intended mutations and diverse in-frame small insertions/deletions were confirmed, indicating that the obtained sublines are useful for molecular pharmacological evaluation of the NT5C2 and PRPS1 gene mutations.


Asunto(s)
Mercaptopurina , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Mercaptopurina/farmacología , Sistemas CRISPR-Cas/genética , Mutación , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Recurrencia , 5'-Nucleotidasa/genética , 5'-Nucleotidasa/metabolismo , 5'-Nucleotidasa/uso terapéutico , Ribosa-Fosfato Pirofosfoquinasa/genética , Ribosa-Fosfato Pirofosfoquinasa/metabolismo
9.
Cancer Gene Ther ; 30(1): 38-50, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35999358

RESUMEN

The Philadelphia (Ph) chromosome was the first translocation identified in leukemia. It is supposed to be generated by aberrant ligation between two DNA double-strand breaks (DSBs) at the BCR gene located on chromosome 9q34 and the ABL1 gene located on chromosome 22q11. Thus, mimicking the initiation process of translocation, we induced CRISPR/Cas9-mediated DSBs simultaneously at the breakpoints of the BCR and ABL1 genes in a granulocyte-macrophage colony-stimulating factor (GM-CSF) dependent human leukemia cell line. After transfection of two single guide RNAs (sgRNAs) targeting intron 13 of the BCR gene and intron 1 of the ABL1 gene, a factor-independent subline was obtained. In the subline, p210 BCR::ABL1 and its reciprocal ABL1::BCR fusions were generated as a result of balanced translocation corresponding to the Ph chromosome. Another set of sgRNAs targeting intron 1 of the BCR gene and intron 1 of the ABL1 gene induced a factor-independent subline expressing p190 BCR::ABL1. Both p210 and p190 BCR::ABL1 induced factor-independent growth by constitutively activating intracellular signaling pathways for transcriptional regulation of cell cycle progression and cell survival that are usually regulated by GM-CSF. These observations suggested that simultaneous DSBs at the BCR and ABL1 gene breakpoints are initiation events for oncogenesis in Ph+ leukemia. (200/200 words).


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Cromosoma Filadelfia , Humanos , Proteínas de Fusión bcr-abl/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Sistemas CRISPR-Cas , Translocación Genética , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Carcinogénesis/genética
10.
Rinsho Ketsueki ; 63(11): 1542-1550, 2022.
Artículo en Japonés | MEDLINE | ID: mdl-36476796

RESUMEN

The CRISPR/Cas9 system was initially discovered as a means of acquired immune response in bacterial species and has been developed and applied to genome editing technology in mammalian cells. This system consists of three key components: crRNA, tracrRNA, and Cas9 protein. Once Cas9 is drawn to the target sequence, it creates DNA double-strand breaks, which then undergo repair via nonhomologous end joining or homology-directed repair. Thus, the CRISPR/Cas9 system enables us to knock out the gene of interest and insert the desired sequences for downstream analyses and clinical applications. Because of the simplicity of CRISPR/Cas9 technology, it has been widely adopted. For effective genome editing, several factors such as off-target effect and CRISPR/Cas9 delivery methods should be considered. Beyond gene knockout and nucleotide substitutions, CRISPR/Cas9 has been applied for various purposes, including more flexible nucleotide substitutions, transcriptional regulation, epigenetic modification, chromatin-chromatin interaction, and live-cell imaging using the nuclease domain deactivated mutant Cas9s, nCas9 and dCas9. This chapter discusses the expanding CRISPR/Cas9 technology-from basics to applications.


Asunto(s)
Edición Génica , Humanos
11.
Int J Hematol ; 116(4): 534-543, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35524023

RESUMEN

Imatinib and second-generation tyrosine kinase inhibitors (TKIs) have dramatically improved the prognosis of Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL). However, overcoming TKI resistance due to the T315I gatekeeper mutation of BCR/ABL1 is crucial for further improving the prognosis. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system is appropriate for establishing a human model of Ph+ ALL with the T315I mutation, because it can induce specific mutations via homologous recombination (HR) repair in cells with intact endogenous HR pathway. Here we used CRISPR/Cas9 to introduce the T315I mutation into the Ph+ lymphoid leukemia cell line KOPN55bi, which appeared to have an active HR pathway based on its resistance to a poly (ADP-Ribose) polymerase-1 inhibitor. Single-guide RNA targeting at codon 315 and single-strand oligodeoxynucleotide containing ACT to ATT nucleotide transition at codon 315 were electroporated with recombinant Cas9 protein. Dasatinib-resistant sublines were obtained after one-month selection with the therapeutic concentration of dasatinib, leading to T315I mutation acquisition through HR. T315I-acquired sublines were highly resistant to imatinib and second-generation TKIs but moderately sensitive to the therapeutic concentration of ponatinib. This authentic human model is helpful for developing new therapeutic strategies overcoming TKI resistance in Ph+ ALL due to T315I mutation.


Asunto(s)
Antineoplásicos , Leucemia Mielógena Crónica BCR-ABL Positiva , Leucemia-Linfoma Linfoblástico de Células Precursoras , Antineoplásicos/uso terapéutico , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , Línea Celular , Dasatinib/uso terapéutico , Resistencia a Antineoplásicos/genética , Proteínas de Fusión bcr-abl , Humanos , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Mutación , Nucleótidos/uso terapéutico , Oligodesoxirribonucleótidos/uso terapéutico , Cromosoma Filadelfia , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , ARN Guía de Kinetoplastida/uso terapéutico
12.
J Steroid Biochem Mol Biol ; 218: 106068, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35124168

RESUMEN

Glucocorticoid (GC) is a key drug in the treatment of B-cell precursor acute lymphoblastic leukemia (BCP-ALL), and the initial GC response is an important prognostic factor. GC receptors play an essential role in GC sensitivity, and somatic mutations of the GC receptor gene, NR3C1, are reportedly identified in some BCP-ALL cases, particularly at relapse. Moreover, associations of somatic mutations of the CREB-binding protein (CREBBP) and Wolf-Hirschhorn syndrome candidate 1 (WHSC1) genes with the GC-resistance of ALL have been suggested. However, the significance of these mutations in the GC sensitivity of BCP-ALL remains to be clarified in the intrinsic genes. In the present study, we sequenced NR3C1, WHSC1, and CREBBP genes in 99 BCP-ALL and 22 T-ALL cell lines (32 and 67 cell lines were known to be established at diagnosis and at relapse, respectively), and detected their mutations in 19 (2 cell lines at diagnosis and 15 cell lines at relapse), 26 (6 and 15), and 38 (11 and 15) cell lines, respectively. Of note, 14 BCP-ALL cell lines with the NR3C1 mutations were significantly more resistant to GC than those without mutations. In contrast, WHSC1 and CREBBP mutations were not associated with GC resistance. However, among the NR3C1 unmutated BCP-ALL cell lines, WHSC1 mutations tended to be associated with GC resistance and lower NR3C1 gene expression. Finally, we successfully established GC-resistant sublines of the GC-sensitive BCP-ALL cell line (697) by disrupting ligand binding and DNA binding domains of the NR3C1 gene using the CRISPR/Cas9 system. These observations demonstrated that somatic mutations of the NR3C1 gene, and possibly the WHSC1 gene, confer GC resistance in BCP-ALL.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Glucocorticoides , Glucocorticoides/farmacología , Glucocorticoides/uso terapéutico , Humanos , Errores Innatos del Metabolismo , Mutación , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Receptores de Glucocorticoides/deficiencia , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Recurrencia
13.
Epigenetics ; 17(2): 220-238, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34304711

RESUMEN

Germline or somatic variation in the family of KMT2 lysine methyltransferases have been associated with a variety of congenital disorders and cancers. Notably, KMT2A-fusions are prevalent in 70% of infant leukaemias but fail to phenocopy short latency leukaemogenesis in mammalian models, suggesting additional factors are necessary for transformation. Given the lack of additional somatic mutation, the role of epigenetic regulation in cell specification, and our prior results of germline KMT2C variation in infant leukaemia patients, we hypothesized that germline dysfunction of KMT2C altered haematopoietic specification. In isogenic KMT2C KO hPSCs, we found genome-wide differences in histone modifications at active and poised enhancers, leading to gene expression profiles akin to mesendoderm rather than mesoderm highlighted by a significant increase in NODAL expression and WNT inhibition, ultimately resulting in a lack of in vitro hemogenic endothelium specification. These unbiased multi-omic results provide new evidence for germline mechanisms increasing risk of early leukaemogenesis.


Asunto(s)
Epigénesis Genética , Hemangioblastos , Animales , Metilación de ADN , Epigenómica , Humanos , Mamíferos , Mutación
14.
J Cell Mol Med ; 25(22): 10521-10533, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34636169

RESUMEN

In chemotherapy for childhood acute lymphoblastic leukaemia (ALL), maintenance therapy consisting of oral daily mercaptopurine and weekly methotrexate is important. NUDT15 variant genotype is reportedly highly associated with severe myelosuppression during maintenance therapy, particularly in Asian and Hispanic populations. It has also been demonstrated that acquired somatic mutations of the NT5C2 and PRPS1 genes, which are involved in thiopurine metabolism, are detectable in a portion of relapsed childhood ALL. To directly confirm the significance of the NUDT15 variant genotype and NT5C2 and PRPS1 mutations in thiopurine sensitivity of leukaemia cells in the intrinsic genes, we investigated 84 B-cell precursor-ALL (BCP-ALL) cell lines. Three and 14 cell lines had homozygous and heterozygous variant diplotypes of the NUDT15 gene, respectively, while 4 and 2 cell lines that were exclusively established from the samples at relapse had the NT5C2 and PRPS1 mutations, respectively. Both NUDT15 variant genotype and NT5C2 and PRPS1 mutations were significantly associated with DNA-incorporated thioguanine levels after exposure to thioguanine at therapeutic concentration. Considering the continuous exposure during the maintenance therapy, we evaluated in vitro mercaptopurine sensitivity after 7-day exposure. Mercaptopurine concentrations lethal to 50% of the leukaemia cells were comparable to therapeutic serum concentration of mercaptopurine. Both NUDT15 variant genotype and NT5C2 and PRPS1 mutations were significantly associated with mercaptopurine sensitivity in 83 BCP-ALL and 23 T-ALL cell lines. The present study provides direct evidence to support the general principle showing that both inherited genotype and somatically acquired mutation are crucially implicated in the drug sensitivity of leukaemia cells.


Asunto(s)
5'-Nucleotidasa/genética , Resistencia a Antineoplásicos/genética , Mercaptopurina/farmacología , Mutación , Polimorfismo Genético , Pirofosfatasas/genética , Ribosa-Fosfato Pirofosfoquinasa/genética , Alelos , Antimetabolitos Antineoplásicos/farmacología , Apoptosis/genética , Línea Celular Tumoral , Supervivencia Celular/genética , Relación Dosis-Respuesta a Droga , Genotipo , Humanos
15.
Cell Death Dis ; 12(10): 875, 2021 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-34564697

RESUMEN

Tyrosine kinase inhibitor (TKI) treatment has dramatically improved the survival of chronic myeloid leukemia (CML) patients, but measurable residual disease typically persists. To more effectively eradicate leukemia cells, simultaneous targeting of BCR-ABL1 and additional CML-related survival proteins has been proposed. Notably, several highly specific myeloid cell leukemia 1 (MCL1) inhibitors have recently entered clinical trials for various hematologic malignancies, although not for CML, reflecting the insensitivity of CML cell lines to single MCL1 inhibition. Here, we show that combining TKI (imatinib, nilotinib, dasatinib, or asciminib) treatment with the small-molecule MCL1 inhibitor S63845 exerted strong synergistic antiviability and proapoptotic effects on CML lines and CD34+ stem/progenitor cells isolated from untreated CML patients in chronic phase. Using wild-type BCR-ABL1-harboring CML lines and their T315I-mutated sublines (generated by CRISPR/Cas9-mediated homologous recombination), we prove that the synergistic proapoptotic effect of the drug combination depended on TKI-mediated BCR-ABL1 inhibition, but not on TKI-related off-target mechanisms. Moreover, we demonstrate that colony formation of CML but not normal hematopoietic stem/progenitor cells became markedly reduced upon combination treatment compared to imatinib monotherapy. Our results suggest that dual targeting of MCL1 and BCR-ABL1 activity may efficiently eradicate residual CML cells without affecting normal hematopoietic stem/progenitors.


Asunto(s)
Antineoplásicos/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Tiofenos/farmacología , Antígenos CD34/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células Clonales , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Humanos , Mesilato de Imatinib/administración & dosificación , Mesilato de Imatinib/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Piroptosis/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Proteína bcl-X/metabolismo
16.
Immunohorizons ; 5(8): 687-702, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34433624

RESUMEN

Tyrosine kinase inhibitor (TKI)-treated chronic myeloid leukemia (CML) patients with increased NK cell number have a better prognosis, and thus, NK cells may suppress CML. However, the efficacy of TKIs varies for reasons yet to be fully elucidated. As NK cell activity is modulated by interactions between their killer cell Ig-like receptors (KIRs) and HLAs of target cells, the combination of their polymorphisms may have functional significance. We previously showed that allelic polymorphisms of KIR3DL1 and HLAs were associated with the prognosis of TKI-treated CML patients. In this study, we focus on differential NK cell activity modulation through KIR3DL1 allotypes. KIR3DL1 expression levels varied according to their alleles. The combination of KIR3DL1 expression level and HLA-Bw4 motifs defined NK cell activity in response to the CML-derived K562 cell line, and Ab-mediated KIR3DL1 blocking reversed this activity. The TKI dasatinib enhanced NK cell activation and cytotoxicity in a KIR3DL1 allotype-dependent manner but did not significantly decrease effector regulatory T cells, suggesting that it directly activated NK cells. Dasatinib also enhanced NK cell cytotoxicity against K562 bearing the BCR-ABL1 T315I TKI resistance-conferring mutation, depending on KIR3DL1/HLA-Bw4 allotypes. Transduction of KIR3DL1*01502 into the NK cell line NK-92 resulted in KIR3DL1 expression and suppression of NK-92 activity by HLA-B ligation, which was reversed by anti-KIR3DL1 Ab. Finally, KIR3DL1 expression levels also defined activation patterns in CML patient-derived NK cells. Our findings raise the possibility of a novel strategy to enhance antitumor NK cell immunity against CML in a KIR3DL1 allotype-dependent manner.


Asunto(s)
Regulación Leucémica de la Expresión Génica/inmunología , Células Asesinas Naturales/inmunología , Leucemia Mielógena Crónica BCR-ABL Positiva/inmunología , Receptores KIR3DL1/inmunología , Alelos , Línea Celular Tumoral , Citotoxicidad Inmunológica/efectos de los fármacos , Citotoxicidad Inmunológica/genética , Citotoxicidad Inmunológica/inmunología , Dasatinib/farmacología , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/inmunología , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Regulación Leucémica de la Expresión Génica/genética , Antígenos HLA-B/genética , Antígenos HLA-B/inmunología , Antígenos HLA-B/metabolismo , Humanos , Células K562 , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Receptores KIR3DL1/genética , Receptores KIR3DL1/metabolismo
17.
Cell Death Discov ; 7(1): 139, 2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34117218

RESUMEN

The long-term prognosis of Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph + ALL) is still unsatisfactory even after the emergence of tyrosine kinase inhibitors (TKIs) against chimeric BCR-ABL, and this is associated with the high incidence of genetic alterations of Ikaros family zinc finger 1 (IKZF1), most frequently the hemi-allelic loss of exons 4-7 expressing a dominant-negative isoform Ik6. We found that lenalidomide (LEN), a representative of immunomodulatory drugs (IMiDs), which have been long used for the treatment of multiple myeloma, specifically induced accumulation of Ik6 with the disappearance of functional isoforms within 24 h (i.e., abrupt and complete shut-down of the IKZF1 activity) in Ik6-positive Ph+ALL cells in a neddylation-dependent manner. The functional IKZF3 isoforms expression was also abruptly and markedly downregulated. The LEN treatment specifically suppressed proliferation of Ik6-positive-Ph+ALL cells by inducing cell cycle arrest via downregulation of cyclins D3 and E and CDK2, and of importance, markedly upregulated their apoptosis in synergy with the TKI imatinib (IM). Apoptosis of IM-resistant Ph+ALL cells with T315I mutation of BCR-ABL was also upregulated by LEN in the presence of the newly developed TKI ponatinib. Analyses of flow cytometry, western blot, and oligonucleotide array revealed that apoptosis was caspase-/p53-dependent and associated with upregulation of pro-apoptotic Bax/Bim, enhanced dephosphorylation of BCR-ABL/Akt, and downregulation of oncogenic helicase genes HILLS, CDC6, and MCMs4 and 8. Further, the synergism of LEN with IM was clearly documented as a significant prolongation of survival in the xenograft mice model. Because this synergism was further potentiated in vitro by dexamethasone, a key drug for ALL treatment, the strategy of repositioning IMiDs for the treatment of Ik6-positive Ph+ALL patients certainly shed new light on an outpatient-based treatment option for achieving their long-term durable remission and higher QOL, particularly for those who are not tolerable to intensified therapeutic approaches.

18.
Leukemia ; 34(8): 2087-2101, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32439895

RESUMEN

Therapy resistance in leukemia may be due to cancer cell-intrinsic and/or -extrinsic mechanisms. Mutations within BCR-ABL1, the oncogene giving rise to chronic myeloid leukemia (CML), lead to resistance to tyrosine kinase inhibitors (TKI), and some are associated with clinically more aggressive disease and worse outcome. Using the retroviral transduction/transplantation model of CML and human cell lines we faithfully recapitulate accelerated disease course in TKI resistance. We show in various models, that murine and human imatinib-resistant leukemia cells positive for the oncogene BCR-ABL1T315I differ from BCR-ABL1 native (BCR-ABL1) cells with regards to niche location and specific niche interactions. We implicate a pathway via integrin ß3, integrin-linked kinase (ILK) and its role in deposition of the extracellular matrix (ECM) protein fibronectin as causative of these differences. We demonstrate a trend towards a reduced BCR-ABL1T315I+ tumor burden and significantly prolonged survival of mice with BCR-ABL1T315I+ CML treated with fibronectin or an ILK inhibitor in xenogeneic and syngeneic murine transplantation models, respectively. These data suggest that interactions with ECM proteins via the integrin ß3/ILK-mediated signaling pathway in BCR-ABL1T315I+ cells differentially and specifically influence leukemia progression. Niche targeting via modulation of the ECM may be a feasible therapeutic approach to consider in this setting.


Asunto(s)
Mesilato de Imatinib/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Animales , Resistencia a Antineoplásicos , Fibronectinas/análisis , Fibronectinas/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/fisiología , Proteínas de Fusión bcr-abl/análisis , Proteínas de Fusión bcr-abl/fisiología , Humanos , Imidazoles/farmacología , Integrina beta3/fisiología , Ratones , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/fisiología , Piridazinas/farmacología
19.
Cancer Cell Int ; 20(1): 434, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-33499894

RESUMEN

BACKGROUND: The genetic variants of the ARID5B gene have recently been reported to be associated with disease susceptibility and treatment outcome in childhood acute lymphoblastic leukemia (ALL). However, few studies have explored the association of ARID5B with sensitivities to chemotherapeutic agents. METHODS: We genotyped susceptibility-linked rs7923074 and rs10821936 as well as relapse-linked rs4948488, rs2893881, and rs6479778 of ARDI5B by direct sequencing of polymerase chain reaction (PCR) products in 72 B-cell precursor-ALL (BCP-ALL) cell lines established from Japanese patients. We also quantified their ARID5B expression levels by real-time reverse transcription PCR, and determined their 50% inhibitory concentration (IC50) values by alamarBlue assays in nine representative chemotherapeutic agents used for ALL treatment. RESULTS: No significant associations were observed in genotypes of the susceptibility-linked single nucleotide polymorphisms (SNPs) and the relapsed-linked SNPs with ARID5B gene expression levels. Of note, IC50 values of vincristine (VCR) (median IC50: 39.6 ng/ml) in 12 cell lines with homozygous genotype of risk allele (C) in the relapse-linked rs4948488 were significantly higher (p = 0.031 in Mann-Whitney U test) than those (1.04 ng/ml) in 60 cell lines with heterozygous or homozygous genotypes of the non-risk allele (T). Furthermore, the IC50 values of mafosfamide [Maf; active metabolite of cyclophosphamide (CY)] and cytarabine (AraC) tended to be associated with the genotype of rs4948488. Similar associations were observed in genotypes of the relapse-linked rs2893881 and rs6479778, but not in those of the susceptibility-linked rs7923074 and rs10821936. In addition, the IC50 values of methotrexate (MTX) were significantly higher (p = 0.023) in 36 cell lines with lower ARID5B gene expression (median IC50: 37.1 ng/ml) than those in the other 36 cell lines with higher expression (16.9 ng/ml). CONCLUSION: These observations in 72 BCP-ALL cell lines suggested that the risk allele of the relapse-linked SNPs of ARID5B may be involved in a higher relapse rate because of resistance to chemotherapeutic agents such as VCR, CY, and AraC. In addition, lower ARID5B gene expression may be associated with MTX resistance.

20.
Leuk Res ; 75: 36-44, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30453100

RESUMEN

Although recent advances in chemotherapy have markedly improved outcome of acute lymphoblastic leukemia (ALL), infantile ALL with MLL gene rearrangements (MLL+ALL) is refractory to chemotherapy. We have shown that specific cytokines FLT3 ligand and TGFß1 both of which are produced from bone marrow stromal cells synergistically induced MLL+ALL cells into chemo-resistant quiescence, and that treatment of MLL+ALL cells with inhibitors against FLT3 and/or TGFß1 receptor partially but significantly converts them toward chemo-sensitive. In the present study, we showed that MLL+ALL cells expressed CXCR4 and CXCR7, both receptors for the same chemokine stromal cell derived factor-1 (SDF-1), but their biological events were differentially regulated by the SDF-1/CXCR4 and SDF-1/CXCR7 axes and particularly exerted an opposite effect for determining chemo-sensitivity of MLL+ALL cells; enhancement via the SDF-1/CXCR4 axis vs. suppression via the SDF-1/CXCR7 axis. Because cytosine-arabinoside-induced apoptosis of MLL+ALL cells was inhibited by pretreatment with the CXCR4 inhibitor but rather accelerated by pretreatment with the CXCR7 inhibitor, an application of the CXCR7 inhibitor may become a good treatment option in future for MLL+ALL patients. MLL+ALL has a unique gene profile distinguishable from other types of ALL and AML, and should be investigated separately in responses to biological active agents including chemokine inhibitors.


Asunto(s)
Resistencia a Antineoplásicos/genética , N-Metiltransferasa de Histona-Lisina/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Quimiocina CXCL12/metabolismo , Citarabina/farmacología , Reordenamiento Génico , Humanos , Receptores CXCR/metabolismo , Receptores CXCR4/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...