Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Geroscience ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38532069

RESUMEN

The endogenous incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) possess neurotrophic, neuroprotective, and anti-neuroinflammatory actions. The dipeptidyl peptidase 4 (DPP-4) inhibitor sitagliptin reduces degradation of endogenous GLP-1 and GIP, and, thereby, extends the circulation of these protective peptides. The current nonhuman primate (NHP) study evaluates whether human translational sitagliptin doses can elevate systemic and central nervous system (CNS) levels of GLP-1/GIP in naive, non-lesioned NHPs, in line with our prior rodent studies that demonstrated sitagliptin efficacy in preclinical models of Parkinson's disease (PD). PD is an age-associated neurodegenerative disorder whose current treatment is inadequate. Repositioning of the well-tolerated and efficacious diabetes drug sitagliptin provides a rapid approach to add to the therapeutic armamentarium for PD. The pharmacokinetics and pharmacodynamics of 3 oral sitagliptin doses (5, 20, and 100 mg/kg), equivalent to the routine clinical dose, a tolerated higher clinical dose and a maximal dose in monkey, were evaluated. Peak plasma sitagliptin levels were aligned both with prior reports in humans administered equivalent doses and with those in rodents demonstrating reduction of PD associated neurodegeneration. Although CNS uptake of sitagliptin was low (cerebrospinal fluid (CSF)/plasma ratio 0.01), both plasma and CSF concentrations of GLP-1/GIP were elevated in line with efficacy in prior rodent PD studies. Additional cellular studies evaluating human SH-SY5Y and primary rat ventral mesencephalic cultures challenged with 6-hydroxydopamine, established cellular models of PD, demonstrated that joint treatment with GLP-1 + GIP mitigated cell death, particularly when combined with DPP-4 inhibition to maintain incretin levels. In conclusion, this study provides a supportive translational step towards the clinical evaluation of sitagliptin in PD and other neurodegenerative disorders for which aging, similarly, is the greatest risk factor.

2.
Circulation ; 149(15): 1183-1201, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38099436

RESUMEN

BACKGROUND: Atherosclerosis preferentially occurs in arterial regions of disturbed blood flow, and stable flow (s-flow) protects against atherosclerosis by incompletely understood mechanisms. METHODS: Our single-cell RNA-sequencing data using the mouse partial carotid ligation model was reanalyzed, which identified Heart-of-glass 1 (HEG1) as an s-flow-induced gene. HEG1 expression was studied by immunostaining, quantitive polymerase chain reaction, hybridization chain reaction, and Western blot in mouse arteries, human aortic endothelial cells (HAECs), and human coronary arteries. A small interfering RNA-mediated knockdown of HEG1 was used to study its function and signaling mechanisms in HAECs under various flow conditions using a cone-and-plate shear device. We generated endothelial-targeted, tamoxifen-inducible HEG1 knockout (HEG1iECKO) mice. To determine the role of HEG1 in atherosclerosis, HEG1iECKO and littermate-control mice were injected with an adeno-associated virus-PCSK9 [proprotein convertase subtilisin/kexin type 9] and fed a Western diet to induce hypercholesterolemia either for 2 weeks with partial carotid ligation or 2 months without the surgery. RESULTS: S-flow induced HEG1 expression at the mRNA and protein levels in vivo and in vitro. S-flow stimulated HEG1 protein translocation to the downstream side of HAECs and release into the media, followed by increased messenger RNA and protein expression. HEG1 knockdown prevented s-flow-induced endothelial responses, including monocyte adhesion, permeability, and migration. Mechanistically, HEG1 knockdown prevented s-flow-induced KLF2/4 (Kruppel-like factor 2/4) expression by regulating its intracellular binding partner KRIT1 (Krev interaction trapped protein 1) and the MEKK3-MEK5-ERK5-MEF2 pathway in HAECs. Compared with littermate controls, HEG1iECKO mice exposed to hypercholesterolemia for 2 weeks and partial carotid ligation developed advanced atherosclerotic plaques, featuring increased necrotic core area, thin-capped fibroatheroma, inflammation, and intraplaque hemorrhage. In a conventional Western diet model for 2 months, HEG1iECKO mice also showed an exacerbated atherosclerosis development in the arterial tree in both sexes and the aortic sinus in males but not in females. Moreover, endothelial HEG1 expression was reduced in human coronary arteries with advanced atherosclerotic plaques. CONCLUSIONS: Our findings indicate that HEG1 is a novel mediator of atheroprotective endothelial responses to flow and a potential therapeutic target.


Asunto(s)
Aterosclerosis , Hipercolesterolemia , Placa Aterosclerótica , Masculino , Femenino , Humanos , Ratones , Animales , Placa Aterosclerótica/metabolismo , Proproteína Convertasa 9/metabolismo , Células Endoteliales/metabolismo , Hipercolesterolemia/genética , Aterosclerosis/genética , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas de la Membrana/metabolismo
3.
Innovations (Phila) ; 18(5): 472-478, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37864489

RESUMEN

OBJECTIVE: Obese patients with coronavirus disease 2019 (COVID-19)-associated acute respiratory failure (ARDS) often require prolonged intubation. However, data are sparse regarding optimal tracheostomy timing in obese adults with COVID-19 requiring venovenous extracorporeal membrane oxygenation (VV-ECMO). This study retrospectively describes the course of obese patients with COVID-19 who underwent tracheostomy on VV-ECMO between March 2020 and December 2022. METHODS: There were 62 participants with a median age of 43 (interquartile range [IQR] 33 to 53) years and a median body mass index of 42 (IQR 34 to 50) kg/m2 who received VV-ECMO for COVID-19-associated ARDS. Of those, 42 underwent tracheostomy on VV-ECMO, and 50% (n = 21) of the 42 patients underwent early (within 14 days of initiated ventilatory support) tracheostomy. RESULTS: Among patients who received tracheostomies, the combined respiratory tract and lung parenchymal bleeding rate was 29% (n = 12), but only 7% required surgical intervention for bleeding from the tracheostomy site (n = 3). The hospital length of stay (LOS) was 42 (IQR 36 to 57) days, and mortality rate was 38% (n = 16). Tracheostomy timing was not associated with differences in respiratory tract bleeding, mechanical ventilatory support duration, VV-ECMO support duration, intensive care unit LOS, hospital LOS, mortality, or survival probability. CONCLUSIONS: Although an individualized and holistic approach to clinical decision making continues to be necessary, the findings of this study suggest that early tracheostomy may be performed safely in obese patients with COVID-19 on VV-ECMO.


Asunto(s)
COVID-19 , Oxigenación por Membrana Extracorpórea , Síndrome de Dificultad Respiratoria , Adulto , Humanos , Persona de Mediana Edad , COVID-19/complicaciones , COVID-19/epidemiología , Traqueostomía , Estudios Retrospectivos , Síndrome de Dificultad Respiratoria/terapia
4.
Nat Rev Cardiol ; 20(11): 738-753, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37225873

RESUMEN

Atherosclerotic diseases such as myocardial infarction, ischaemic stroke and peripheral artery disease continue to be leading causes of death worldwide despite the success of treatments with cholesterol-lowering drugs and drug-eluting stents, raising the need to identify additional therapeutic targets. Interestingly, atherosclerosis preferentially develops in curved and branching arterial regions, where endothelial cells are exposed to disturbed blood flow with characteristic low-magnitude oscillatory shear stress. By contrast, straight arterial regions exposed to stable flow, which is associated with high-magnitude, unidirectional shear stress, are relatively well protected from the disease through shear-dependent, atheroprotective endothelial cell responses. Flow potently regulates structural, functional, transcriptomic, epigenomic and metabolic changes in endothelial cells through mechanosensors and mechanosignal transduction pathways. A study using single-cell RNA sequencing and chromatin accessibility analysis in a mouse model of flow-induced atherosclerosis demonstrated that disturbed flow reprogrammes arterial endothelial cells in situ from healthy phenotypes to diseased ones characterized by endothelial inflammation, endothelial-to-mesenchymal transition, endothelial-to-immune cell-like transition and metabolic changes. In this Review, we discuss this emerging concept of disturbed-flow-induced reprogramming of endothelial cells (FIRE) as a potential pro-atherogenic mechanism. Defining the flow-induced mechanisms through which endothelial cells are reprogrammed to promote atherosclerosis is a crucial area of research that could lead to the identification of novel therapeutic targets to combat the high prevalence of atherosclerotic disease.

6.
Genes (Basel) ; 9(4)2018 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-29561798

RESUMEN

MicroRNAs (miRNAs) are short, endogenous, non-coding RNAs that post-transcriptionally regulate gene expression by base pairing with mRNA targets. Altered miRNA expression profiles have been observed in several diseases, including neurodegeneration. Multiple studies have reported altered expressions of miRNAs in the brains of individuals with Alzheimer's disease (AD) as compared to those of healthy elderly adults. Some of the miRNAs found to be dysregulated in AD have been reported to correlate with neuropathological changes, including plaque and tangle accumulation, as well as altered expressions of species that are known to be involved in AD pathology. To examine the potentially pathogenic functions of several dysregulated miRNAs in AD, we review the current literature with a focus on the activities of ten miRNAs in biological pathways involved in AD pathogenesis. Comprehensive understandings of the expression profiles and activities of these miRNAs will illuminate their roles as potential therapeutic targets in AD brain and may lead to the discovery of breakthrough treatment strategies for AD.

7.
Exp Neurol ; 288: 104-113, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27856285

RESUMEN

Proglucagon-derived peptides, especially glucagon-like peptide-1 (GLP-1) and its long-acting mimetics, have exhibited neuroprotective effects in animal models of stroke. Several of these peptides are in clinical trials for stroke. Oxyntomodulin (OXM) is a proglucagon-derived peptide that co-activates the GLP-1 receptor (GLP-1R) and the glucagon receptor (GCGR). The neuroprotective action of OXM, however, has not been thoroughly investigated. In this study, the neuroprotective effect of OXM was first examined in human neuroblastoma (SH-SY5Y) cells and rat primary cortical neurons. GLP-1R and GCGR antagonists, and inhibitors of various signaling pathways were used in cell culture to characterize the mechanisms of action of OXM. To evaluate translation in vivo, OXM-mediated neuroprotection was assessed in a 60-min, transient middle cerebral artery occlusion (MCAo) rat model of stroke. We found that OXM dose- and time-dependently increased cell viability and protected cells from glutamate toxicity and oxidative stress. These neuroprotective actions of OXM were mainly mediated through the GLP-1R. OXM induced intracellular cAMP production and activated cAMP-response element-binding protein (CREB). Furthermore, inhibition of the PKA and MAPK pathways, but not inhibition of the PI3K pathway, significantly attenuated the OXM neuroprotective actions. Intracerebroventricular administration of OXM significantly reduced cerebral infarct size and improved locomotor activities in MCAo stroke rats. Therefore, we conclude that OXM is neuroprotective against ischemic brain injury. The mechanisms of action involve induction of intracellular cAMP, activation of PKA and MAPK pathways and phosphorylation of CREB.


Asunto(s)
Factores de Crecimiento Nervioso/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Oxintomodulina/farmacología , Accidente Cerebrovascular/patología , Animales , Infarto Encefálico/tratamiento farmacológico , Infarto Encefálico/etiología , Proteína de Unión a CREB/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Ácido Glutámico/farmacología , Humanos , Peróxido de Hidrógeno/farmacología , Infarto de la Arteria Cerebral Media/complicaciones , Locomoción/efectos de los fármacos , Masculino , Factores de Crecimiento Nervioso/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Oxintomodulina/uso terapéutico , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/fisiopatología
8.
Exp Neurol ; 288: 176-186, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27845037

RESUMEN

Several single incretin receptor agonists that are approved for the treatment of type 2 diabetes mellitus (T2DM) have been shown to be neuroprotective in cell and animal models of neurodegeneration. Recently, a synthetic dual incretin receptor agonist, nicknamed "twincretin," was shown to improve upon the metabolic benefits of single receptor agonists in mouse and monkey models of T2DM. In the current study, the neuroprotective effects of twincretin are probed in cell and mouse models of mild traumatic brain injury (mTBI), a prevalent cause of neurodegeneration in toddlers, teenagers and the elderly. Twincretin is herein shown to have activity at two different receptors, dose-dependently increase levels of intermediates in the neurotrophic CREB pathway and enhance viability of human neuroblastoma cells exposed to toxic concentrations of glutamate and hydrogen peroxide, insults mimicking the inflammatory conditions in the brain post-mTBI. Additionally, twincretin is shown to improve upon the neurotrophic effects of single incretin receptor agonists in these same cells. Finally, a clinically translatable dose of twincretin, when administered post-mTBI, is shown to fully restore the visual and spatial memory deficits induced by mTBI, as evaluated in a mouse model of weight drop close head injury. These results establish twincretin as a novel neuroprotective agent and suggest that it may improve upon the effects of the single incretin receptor agonists via dual agonism.


Asunto(s)
Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Incretinas/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Receptores de la Hormona Gastrointestinal/metabolismo , Animales , Temperatura Corporal/efectos de los fármacos , Lesiones Traumáticas del Encéfalo/complicaciones , Proteína de Unión a CREB/metabolismo , Línea Celular Tumoral , Células Cultivadas , Modelos Animales de Enfermedad , Embrión de Mamíferos , Receptor del Péptido 1 Similar al Glucagón/agonistas , Humanos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos de la Memoria/etiología , Trastornos de la Memoria/prevención & control , Ratones , Ratones Endogámicos ICR , Neuroblastoma/patología , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Receptores de la Hormona Gastrointestinal/agonistas , Reconocimiento en Psicología/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
9.
PLoS One ; 11(6): e0156493, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27254111

RESUMEN

Traumatic brain injury (TBI), often caused by a concussive impact to the head, affects an estimated 1.7 million Americans annually. With no approved drugs, its pharmacological treatment represents a significant and currently unmet medical need. In our prior development of the anti-cholinesterase compound phenserine for the treatment of neurodegenerative disorders, we recognized that it also possesses non-cholinergic actions with clinical potential. Here, we demonstrate neuroprotective actions of phenserine in neuronal cultures challenged with oxidative stress and glutamate excitotoxicity, two insults of relevance to TBI. These actions translated into amelioration of spatial and visual memory impairments in a mouse model of closed head mild TBI (mTBI) two days following cessation of clinically translatable dosing with phenserine (2.5 and 5.0 mg/kg BID x 5 days initiated post mTBI) in the absence of anti-cholinesterase activity. mTBI elevated levels of thiobarbituric acid reactive substances (TBARS), a marker of oxidative stress. Phenserine counteracted this by augmenting homeostatic mechanisms to mitigate oxidative stress, including superoxide dismutase [SOD] 1 and 2, and glutathione peroxidase [GPx], the activity and protein levels of which were measured by specific assays. Microarray analysis of hippocampal gene expression established that large numbers of genes were exclusively regulated by each individual treatment with a substantial number of them co-regulated between groups. Molecular pathways associated with lipid peroxidation were found to be regulated by mTBI, and treatment of mTBI animals with phenserine effectively reversed injury-induced regulations in the 'Blalock Alzheimer's Disease Up' pathway. Together these data suggest that multiple phenserine-associated actions underpin this compound's ability to ameliorate cognitive deficits caused by mTBI, and support the further evaluation of the compound as a therapeutic for TBI.


Asunto(s)
Conmoción Encefálica/tratamiento farmacológico , Disfunción Cognitiva/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Fisostigmina/análogos & derivados , Animales , Conmoción Encefálica/complicaciones , Conmoción Encefálica/patología , Colinérgicos/administración & dosificación , Inhibidores de la Colinesterasa/administración & dosificación , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Glutámico/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Peroxidación de Lípido/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Neuronas/efectos de los fármacos , Neuronas/patología , Fisostigmina/administración & dosificación
10.
Med Chem ; 12(3): 217-25, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26527155

RESUMEN

Detection of biomarkers for neurodegenerative disorders (NDDs) within brain tissues of Alzheimer's disease (AD) and Parkinson's disease (PD) patients has always been hampered by our inability to access and biopsy tissue of key brain regions implicated in disease occurrence and progression. Currently, diagnosis of NDDs is principally based on clinical observations of symptoms that present at later stages of disease progression, followed by neuroimaging and, possibly, CSF evaluation. One way to potentially detect and diagnose NDDs at a far earlier stage is to screen for abnormal levels of specific disease markers within the peripheral circulation of patients with NDDs. Increasing evidence suggests that there is dysregulation of microRNAs (miRNAs) in NDDs. Peripheral blood mononuclear cells, as well as biofluids, such as plasma, serum, urine and cerebrospinal fluid, contain miRNAs that can be identified and quantified. Circulating miRNAs within blood and other biofluids may thus be characterized and used as non-invasive, diagnostic biomarkers that facilitate the early detection of disease and potentially the continual monitoring of disease progression for NDDs such as AD and PD. Plainly, such a screen is only possible with a clear understanding of which miRNAs change with disease, and when these changes occur during the progression of AD and PD. Such information is becoming increasingly available and, in the near future, may not only support disease diagnosis, but provide the opportunity to evaluate therapeutic interventions earlier in the disease process.


Asunto(s)
Enfermedad de Alzheimer/sangre , MicroARNs/sangre , Enfermedad de Parkinson/sangre , Enfermedad de Alzheimer/diagnóstico , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , Humanos , MicroARNs/metabolismo , Enfermedad de Parkinson/diagnóstico
11.
J Alzheimers Dis ; 48(3): 563-80, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26402105

RESUMEN

MicroRNAs (miRNAs) are endogenous, ∼22 nucleotide, non-coding RNA molecules that function as post-transcriptional regulators of gene expression. miRNA dysregulation has been observed in cancer and in neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's diseases, amyotrophic lateral sclerosis, and the neurological disorder, epilepsy. Neuronal degradation and death are important hallmarks of neurodegenerative disorders. Additionally, abnormalities in metabolism, synapsis and axonal transport have been associated with Alzheimer's disease, Parkinson's disease, and frontotemporal dementia. A number of recently published studies have demonstrated the importance of miRNAs in the nervous system and have contributed to the growing body of evidence on miRNA dysregulation in neurological disorders. Knowledge of the expressions and activities of such miRNAs may aid in the development of novel therapeutics. In this review, we discuss the significance of miRNA dysregulation in the development of neurodegenerative disorders and the use of miRNAs as targets for therapeutic intervention.


Asunto(s)
Epilepsia/metabolismo , MicroARNs/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Epilepsia/tratamiento farmacológico , Humanos , MicroARNs/agonistas , MicroARNs/antagonistas & inhibidores , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
12.
Nano Lett ; 14(12): 7017-23, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25360485

RESUMEN

Developing the ability to 3D print various classes of materials possessing distinct properties could enable the freeform generation of active electronics in unique functional, interwoven architectures. Achieving seamless integration of diverse materials with 3D printing is a significant challenge that requires overcoming discrepancies in material properties in addition to ensuring that all the materials are compatible with the 3D printing process. To date, 3D printing has been limited to specific plastics, passive conductors, and a few biological materials. Here, we show that diverse classes of materials can be 3D printed and fully integrated into device components with active properties. Specifically, we demonstrate the seamless interweaving of five different materials, including (1) emissive semiconducting inorganic nanoparticles, (2) an elastomeric matrix, (3) organic polymers as charge transport layers, (4) solid and liquid metal leads, and (5) a UV-adhesive transparent substrate layer. As a proof of concept for demonstrating the integrated functionality of these materials, we 3D printed quantum dot-based light-emitting diodes (QD-LEDs) that exhibit pure and tunable color emission properties. By further incorporating the 3D scanning of surface topologies, we demonstrate the ability to conformally print devices onto curvilinear surfaces, such as contact lenses. Finally, we show that novel architectures that are not easily accessed using standard microfabrication techniques can be constructed, by 3D printing a 2 × 2 × 2 cube of encapsulated LEDs, in which every component of the cube and electronics are 3D printed. Overall, these results suggest that 3D printing is more versatile than has been demonstrated to date and is capable of integrating many distinct classes of materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...