Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Development ; 147(6)2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32094115

RESUMEN

Segmentation of the vertebrate hindbrain leads to the formation of rhombomeres, each with a distinct anteroposterior identity. Specialised boundary cells form at segment borders that act as a source or regulator of neuronal differentiation. In zebrafish, there is spatial patterning of neurogenesis in which non-neurogenic zones form at boundaries and segment centres, in part mediated by Fgf20 signalling. To further understand the control of neurogenesis, we have carried out single cell RNA sequencing of the zebrafish hindbrain at three different stages of patterning. Analyses of the data reveal known and novel markers of distinct hindbrain segments, of cell types along the dorsoventral axis, and of the transition of progenitors to neuronal differentiation. We find major shifts in the transcriptome of progenitors and of differentiating cells between the different stages analysed. Supervised clustering with markers of boundary cells and segment centres, together with RNA-seq analysis of Fgf-regulated genes, has revealed new candidate regulators of cell differentiation in the hindbrain. These data provide a valuable resource for functional investigations of the patterning of neurogenesis and the transition of progenitors to neuronal differentiation.


Asunto(s)
Tipificación del Cuerpo/genética , Rombencéfalo/embriología , Rombencéfalo/metabolismo , Transcriptoma/fisiología , Pez Cebra , Animales , Animales Modificados Genéticamente , Atlas como Asunto , Diferenciación Celular/genética , Embrión no Mamífero , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Neuronas/citología , Neuronas/fisiología , Análisis de la Célula Individual/métodos , Distribución Tisular , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo
2.
Dev Biol ; 457(1): 69-82, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31539539

RESUMEN

Vertebrate ear progenitors are induced by fibroblast growth factor signalling, however the molecular mechanisms leading to the coordinate activation of downstream targets are yet to be discovered. The ear, like other sensory placodes, arises from the pre-placodal region at the border of the neural plate. Using a multiplex NanoString approach, we determined the response of these progenitors to FGF signalling by examining the changes of more than 200 transcripts that define the otic and other placodes, neural crest and neural plate territories. This analysis identifies new direct and indirect FGF targets during otic induction. Investigating changes in histone marks by ChIP-seq reveals that FGF exposure of pre-placodal cells leads to rapid deposition of active chromatin marks H3K27ac near FGF-response genes, while H3K27ac is depleted in the vicinity of non-otic genes. Genomic regions that gain H3K27ac act as cis-regulatory elements controlling otic gene expression in time and space and define a unique transcription factor signature likely to control their activity. Finally, we show that in response to FGF signalling the transcription factor dimer AP1 recruits the histone acetyl transferase p300 to selected otic enhancers. Thus, during ear induction FGF signalling modifies the chromatin landscape to promote enhancer activation and chromatin accessibility.


Asunto(s)
Oído/embriología , Elementos de Facilitación Genéticos , Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Animales , Proteínas Aviares/metabolismo , Embrión de Pollo , Factores de Transcripción Forkhead/metabolismo , Código de Histonas , Proteínas Oncogénicas v-fos/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Factores de Transcripción p300-CBP/metabolismo
3.
J Cell Biol ; 217(5): 1719-1738, 2018 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-29535193

RESUMEN

During neural circuit assembly, extrinsic signals are integrated into changes in growth cone (GC) cytoskeleton underlying axon guidance decisions. Microtubules (MTs) were shown to play an instructive role in GC steering. However, the numerous actors required for MT remodeling during axon navigation and their precise mode of action are far from being deciphered. Using loss- and gain-of-function analyses during zebrafish development, we identify in this study the meiotic clade adenosine triphosphatase Fidgetin-like 1 (Fignl1) as a key GC-enriched MT-interacting protein in motor circuit wiring and larval locomotion. We show that Fignl1 controls GC morphology and behavior at intermediate targets by regulating MT plus end dynamics and growth directionality. We further reveal that alternative translation of Fignl1 transcript is a sophisticated mechanism modulating MT dynamics: a full-length isoform regulates MT plus end-tracking protein binding at plus ends, whereas shorter isoforms promote their depolymerization beneath the cell cortex. Our study thus pinpoints Fignl1 as a multifaceted key player in MT remodeling underlying motor circuit connectivity.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Orientación del Axón , Axones/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Adenosina Trifosfatasas/química , Animales , Citoesqueleto/metabolismo , Técnicas de Silenciamiento del Gen , Conos de Crecimiento/metabolismo , Humanos , Larva/metabolismo , Locomoción , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas Motoras/metabolismo , Proteínas Nucleares/química , Polimerizacion , Isoformas de Proteínas/metabolismo , Médula Espinal/metabolismo
4.
Proc Natl Acad Sci U S A ; 115(2): 355-360, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29259119

RESUMEN

Around the time of gastrulation in higher vertebrate embryos, inductive interactions direct cells to form central nervous system (neural plate) or sensory placodes. Grafts of different tissues into the periphery of a chicken embryo elicit different responses: Hensen's node induces a neural plate whereas the head mesoderm induces placodes. How different are these processes? Transcriptome analysis in time course reveals that both processes start by induction of a common set of genes, which later diverge. These genes are remarkably similar to those induced by an extraembryonic tissue, the hypoblast, and are normally expressed in the pregastrulation stage epiblast. Explants of this epiblast grown in the absence of further signals develop as neural plate border derivatives and eventually express lens markers. We designate this state as "preborder"; its transcriptome resembles embryonic stem cells. Finally, using sequential transplantation experiments, we show that the node, head mesoderm, and hypoblast are interchangeable to begin any of these inductions while the final outcome depends on the tissue emitting the later signals.


Asunto(s)
Sistema Nervioso Central/metabolismo , Inducción Embrionaria , Células Madre Embrionarias/metabolismo , Gástrula/metabolismo , Mesodermo/metabolismo , Placa Neural/metabolismo , Animales , Sistema Nervioso Central/embriología , Embrión de Pollo , Gástrula/embriología , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Mesodermo/embriología , Placa Neural/embriología
5.
Development ; 144(15): 2810-2823, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28684624

RESUMEN

In vertebrates, cranial placodes contribute to all sense organs and sensory ganglia and arise from a common pool of Six1/Eya2+ progenitors. Here we dissect the events that specify ectodermal cells as placode progenitors using newly identified genes upstream of the Six/Eya complex. We show in chick that two different tissues, namely the lateral head mesoderm and the prechordal mesendoderm, gradually induce placode progenitors: cells pass through successive transcriptional states, each identified by distinct factors and controlled by different signals. Both tissues initiate a common transcriptional state but over time impart regional character, with the acquisition of anterior identity dependent on Shh signalling. Using a network inference approach we predict the regulatory relationships among newly identified transcription factors and verify predicted links in knockdown experiments. Based on this analysis we propose a new model for placode progenitor induction, in which the initial induction of a generic transcriptional state precedes regional divergence.


Asunto(s)
Transducción de Señal/fisiología , Vertebrados/embriología , Animales , Comunicación Celular/genética , Comunicación Celular/fisiología , Embrión de Pollo , Pollos , Ectodermo/citología , Ectodermo/embriología , Ectodermo/metabolismo , Electroporación , Ganglios Sensoriales/citología , Ganglios Sensoriales/embriología , Ganglios Sensoriales/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Hibridación in Situ , Análisis de Secuencia por Matrices de Oligonucleótidos , Codorniz , Órganos de los Sentidos/citología , Órganos de los Sentidos/embriología , Órganos de los Sentidos/metabolismo , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vertebrados/metabolismo
6.
Sci Rep ; 7(1): 6162, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28733657

RESUMEN

During development cell commitment is regulated by inductive signals that are tightly controlled in time and space. In response, cells activate specific programmes, but the transcriptional circuits that maintain cell identity in a changing signalling environment are often poorly understood. Specification of inner ear progenitors is initiated by FGF signalling. Here, we establish the genetic hierarchy downstream of FGF by systematic analysis of many ear factors combined with a network inference approach. We show that FGF rapidly activates a small circuit of transcription factors forming positive feedback loops to stabilise otic progenitor identity. Our predictive network suggests that subsequently, transcriptional repressors ensure the transition of progenitors to mature otic cells, while simultaneously repressing alternative fates. Thus, we reveal the regulatory logic that initiates ear formation and highlight the hierarchical organisation of the otic gene network.


Asunto(s)
Oído Interno/crecimiento & desarrollo , Factores de Crecimiento de Fibroblastos/metabolismo , Perfilación de la Expresión Génica/veterinaria , Redes Reguladoras de Genes , Animales , Embrión de Pollo , Oído Interno/química , Retroalimentación Fisiológica , Regulación del Desarrollo de la Expresión Génica , Transducción de Señal , Factores de Transcripción/genética
7.
Development ; 144(8): 1531-1543, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28264836

RESUMEN

The inner ear is a complex vertebrate sense organ, yet it arises from a simple epithelium, the otic placode. Specification towards otic fate requires diverse signals and transcriptional inputs that act sequentially and/or in parallel. Using the chick embryo, we uncover novel genes in the gene regulatory network underlying otic commitment and reveal dynamic changes in gene expression. Functional analysis of selected transcription factors reveals the genetic hierarchy underlying the transition from progenitor to committed precursor, integrating known and novel molecular players. Our results not only characterize the otic transcriptome in unprecedented detail, but also identify new gene interactions responsible for inner ear development and for the segregation of the otic lineage from epibranchial progenitors. By recapitulating the embryonic programme, the genes and genetic sub-circuits discovered here might be useful for reprogramming naïve cells towards otic identity to restore hearing loss.


Asunto(s)
Oído Interno/embriología , Oído Interno/metabolismo , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Biología de Sistemas/métodos , Animales , Embrión de Pollo , Análisis por Conglomerados , Retroalimentación Fisiológica , Modelos Biológicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Tiempo , Factores de Transcripción/metabolismo , Transcripción Genética
8.
Dev Cell ; 26(2): 195-203, 2013 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-23906067

RESUMEN

Few families of signaling factors have been implicated in the control of development. Here, we identify the neuropeptides nociceptin and somatostatin, a neurotransmitter and neuroendocrine hormone, as a class of developmental signals in both chick and zebrafish. We show that signals from the anterior mesendoderm are required for the formation of anterior placode progenitors, with one of the signals being somatostatin. Somatostatin controls ectodermal expression of nociceptin, and both peptides regulate Pax6 in lens and olfactory progenitors. Consequently, loss of somatostatin and nociceptin signaling leads to severe reduction of lens formation. Our findings not only uncover these neuropeptides as developmental signals but also identify a long-sought-after mechanism that initiates Pax6 in placode progenitors and may explain the ancient evolutionary origin of neuropeptides, predating a complex nervous system.


Asunto(s)
Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/metabolismo , Cristalino/embriología , Bulbo Olfatorio/embriología , Mucosa Olfatoria/embriología , Péptidos Opioides/metabolismo , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/metabolismo , Somatostatina/metabolismo , Células Madre/citología , Animales , Embrión de Pollo , Proteínas del Ojo/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/biosíntesis , Cristalino/citología , Cristalino/metabolismo , Bulbo Olfatorio/citología , Bulbo Olfatorio/metabolismo , Mucosa Olfatoria/citología , Mucosa Olfatoria/metabolismo , Péptidos Opioides/biosíntesis , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/biosíntesis , Proteínas Represoras/biosíntesis , Transducción de Señal , Células Madre/fisiología , Pez Cebra/embriología , Proteínas de Pez Cebra/metabolismo , Nociceptina
9.
Genesis ; 51(5): 296-310, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23174848

RESUMEN

Setting up the body plan during embryonic development requires the coordinated action of many signals and transcriptional regulators in a precise temporal sequence and spatial pattern. The last decades have seen an explosion of information describing the molecular control of many developmental processes. The next challenge is to integrate this information into logic "wiring diagrams" that visualize gene actions and outputs, have predictive power and point to key control nodes. Here, we provide an experimental workflow on how to construct gene regulatory networks using the chick as model system.


Asunto(s)
Pollos/genética , Redes Reguladoras de Genes , Animales , Embrión de Pollo , Elementos de Facilitación Genéticos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica
10.
Dev Biol ; 370(1): 3-23, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22790010

RESUMEN

In the vertebrate head, crucial parts of the sense organs and sensory ganglia develop from special regions, the cranial placodes. Despite their cellular and functional diversity, they arise from a common field of multipotent progenitors and acquire distinct identity later under the influence of local signalling. Here we present the gene regulatory network that summarises our current understanding of how sensory cells are specified, how they become different from other ectodermal derivatives and how they begin to diversify to generate placodes with different identities. This analysis reveals how sequential activation of sets of transcription factors subdivides the ectoderm over time into smaller domains of progenitors for the central nervous system, neural crest, epidermis and sensory placodes. Within this hierarchy the timing of signalling and developmental history of each cell population is of critical importance to determine the ultimate outcome. A reoccurring theme is that local signals set up broad gene expression domains, which are further refined by mutual repression between different transcription factors. The Six and Eya network lies at the heart of sensory progenitor specification. In a positive feedback loop these factors perpetuate their own expression thus stabilising pre-placodal fate, while simultaneously repressing neural and neural crest specific factors. Downstream of the Six and Eya cassette, Pax genes in combination with other factors begin to impart regional identity to placode progenitors. While our review highlights the wealth of information available, it also points to the lack information on the cis-regulatory mechanisms that control placode specification and of how the repeated use of signalling input is integrated.


Asunto(s)
Ganglios Sensoriales/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Redes Reguladoras de Genes/fisiología , Cabeza/inervación , Sistema Nervioso Periférico/embriología , Células Receptoras Sensoriales/fisiología , Vertebrados/embriología , Animales , Diferenciación Celular/fisiología , Ectodermo/fisiología , Cabeza/embriología , Modelos Biológicos , Células-Madre Neurales/citología , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...