Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(3): 113946, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38483902

RESUMEN

The mechanisms by which genomic risks contribute to the onset of neuropsychiatric conditions remain a key challenge and a prerequisite for successful development of effective therapies. 15q11.2 copy number variation (CNV) containing the CYFIP1 gene is associated with autism and schizophrenia. Using stem cell models, we show that 15q11.2 deletion (15q11.2del) and CYFIP1 loss of function (CYFIP1-LoF) lead to premature neuronal differentiation, while CYFIP1 gain of function (CYFIP1-GoF) favors neural progenitor maintenance. CYFIP1 dosage changes led to dysregulated cholesterol metabolism and altered levels of 24S,25-epoxycholesterol, which can mimic the 15q11.2del and CYFIP1-LoF phenotypes by promoting cortical neuronal differentiation and can restore the impaired neuronal differentiation of CYFIP1-GoF neural progenitors. Moreover, the neurogenic activity of 24S,25-epoxycholesterol is lost following genetic deletion of liver X receptor (LXRß), while compound deletion of LXRß in CYFIP1-/- background rescued their premature neurogenesis. This work delineates LXR-mediated oxysterol regulation of neurogenesis as a pathological mechanism in neural cells carrying 15q11.2 CNV and provides a potential target for therapeutic strategies for associated disorders.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Trastorno Autístico , Humanos , Receptores X del Hígado/genética , Receptores X del Hígado/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Variaciones en el Número de Copia de ADN , Trastorno Autístico/genética , Células Madre/metabolismo , Neurogénesis
2.
Brain ; 146(4): 1523-1541, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36204995

RESUMEN

Myoclonus dystonia is a childhood-onset hyperkinetic movement disorder with a combined motor and psychiatric phenotype. It represents one of the few autosomal dominant inherited dystonic disorders and is caused by mutations in the ε-sarcoglycan (SGCE) gene. Work to date suggests that dystonia is caused by disruption of neuronal networks, principally basal ganglia-cerebello-thalamo-cortical circuits. Investigation of cortical involvement has primarily focused on disruption to interneuron inhibitory activity, rather than the excitatory activity of cortical pyramidal neurons. Here, we have sought to examine excitatory cortical glutamatergic activity using two approaches: the CRISPR/Cas9 editing of a human embryonic cell line, generating an SGCE compound heterozygous mutation, and three patient-derived induced pluripotent stem cell lines, each gene edited to generate matched wild-type SGCE control lines. Differentiation towards a cortical neuronal phenotype demonstrated no significant differences in either early- (PAX6, FOXG1) or late-stage (CTIP2, TBR1) neurodevelopmental markers. However, functional characterization using Ca2+ imaging and microelectrode array approaches identified an increase in network activity, while single-cell patch clamp studies found a greater propensity towards action potential generation with larger amplitudes and shorter half-widths associated with SGCE mutations. Bulk RNA sequencing analysis identified gene ontological enrichment for 'neuron projection development', 'synaptic signalling' and 'synaptic transmission'. Examination of dendritic morphology found SGCE mutations to be associated with a significantly higher number of branches and longer branch lengths, together with longer ion-channel dense axon initial segments, particularly towards the latter stages of differentiation (Days 80 and 100). Gene expression and protein quantification of key synaptic proteins (synaptophysin, synapsin and PSD95), AMPA and NMDA receptor subunits found no significant differences between the SGCE mutation and matched wild-type lines. By contrast, significant changes to synaptic adhesion molecule expression were identified, namely higher presynaptic neurexin-1 and lower postsynaptic neuroligin-4 levels in the SGCE mutation carrying lines. Our study demonstrates an increased intrinsic excitability of cortical glutamatergic neuronal cells in the context of SGCE mutations, coupled with a more complex neurite morphology and disruption to synaptic adhesion molecules. These changes potentially represent key components to the development of the hyperkinetic clinical phenotype observed in myoclonus dystonia, as well a central feature to the wider spectrum of dystonic disorders, potentially providing targets for future therapeutic development.


Asunto(s)
Distonía , Trastornos Distónicos , Mioclonía , Humanos , Niño , Distonía/genética , Mioclonía/diagnóstico , Mutación/genética , Sarcoglicanos/genética
3.
Stem Cell Reports ; 12(2): 191-200, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30661995

RESUMEN

Striatal interneurons are born in the medial and caudal ganglionic eminences (MGE and CGE) and play an important role in human striatal function and dysfunction in Huntington's disease and dystonia. MGE/CGE-like neural progenitors have been generated from human pluripotent stem cells (hPSCs) for studying cortical interneuron development and cell therapy for epilepsy and other neurodevelopmental disorders. Here, we report the capacity of hPSC-derived MGE/CGE-like progenitors to differentiate into functional striatal interneurons. In vitro, these hPSC neuronal derivatives expressed cortical and striatal interneuron markers at the mRNA and protein level and displayed maturing electrophysiological properties. Following transplantation into neonatal rat striatum, progenitors differentiated into striatal interneuron subtypes and were consistently found in the nearby septum and hippocampus. These findings highlight the potential for hPSC-derived striatal interneurons as an invaluable tool in modeling striatal development and function in vitro or as a source of cells for regenerative medicine.


Asunto(s)
Diferenciación Celular/fisiología , Cuerpo Estriado/citología , Hipocampo/citología , Interneuronas/citología , Células Madre Pluripotentes/citología , Animales , Cuerpo Estriado/metabolismo , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Hipocampo/metabolismo , Humanos , Interneuronas/metabolismo , Eminencia Media/metabolismo , Eminencia Media/fisiología , Neurogénesis/fisiología , Células Madre Pluripotentes/metabolismo , ARN Mensajero/metabolismo , Ratas
4.
Brain Pathol ; 27(4): 508-517, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28585386

RESUMEN

Research into psychiatric disorders has long been hindered by the lack of appropriate models. Induced pluripotent stem cells (iPSCs) offer an unlimited source of patient-specific cells, which in principle can be differentiated into all disease-relevant somatic cell types to create in vitro models of the disorder of interest. Here, neuronal differentiation protocols available for this purpose and the current progress on iPSCs-based models of schizophrenia, autism spectrum disorders and bipolar disorder were reviewed. We also discuss the impact of the recently developed CRISPR/Cas9 genome editing tool in the disease modeling field. Genetically engineered mutation of disease risk alleles in well characterized reference "control" hPSCs or correction of disease risk variants in patient iPSCs has been used as a powerful means to establish causality of the identified cellular pathology. Together, iPSC reprogramming and CRISPR/CAS9 genome editing technology have already significantly contributed to our understanding of the developmental origin of some major psychiatric disorders. The challenge ahead is the identification of shared mechanisms in their etiology, which will ultimately be relevant to the development of new treatments.


Asunto(s)
Células Madre Pluripotentes Inducidas/fisiología , Células Madre Pluripotentes Inducidas/trasplante , Trastornos del Neurodesarrollo/cirugía , Neuronas/fisiología , Animales , Humanos , Neuronas/trasplante
5.
Sci Rep ; 6: 32488, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27580818

RESUMEN

Cell type-specific surface markers offer a powerful tool for purifying defined cell types for restorative therapies and drug screenings. Midbrain dopaminergic neurons (mesDA) are the nerve cells preferentially lost in the brains of Parkinson's disease patients. Clinical trials of transplantation of fetal neural precursors suggest that cell therapy may offer a cure for this devastating neurological disease. Many lines of preclinical studies demonstrate that neural progenitors committed to dopaminergic fate survive and integrate better than postmitotic DA neurons. We show that the folate-receptor 1 (FolR1), a GPI-anchored cell surface molecule, specifically marks mesDA neural progenitors and immature mesDA neurons. FolR1 expression superimposes with Lmx1a, a bona-fide mesDA lineage marker, during the active phase of mesDA neurogenesis from E9.5 to E14.5 during mouse development, as well as in ESC-derived mesDA lineage. FolR1(+) neural progenitors can be isolated by FACS or magnetic sorting (MAC) which give rise to dopamine neurons expressing TH and Pitx3, whilst FolR1 negative cells generate non-dopaminergic neurons and glia cells. This study identifies FolR1 as a new cell surface marker selectively expressed in mesDA progenitors in vivo and in vitro and that can be used to enrich in vitro differentiated TH neurons.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Receptor 1 de Folato/genética , Mesencéfalo/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Células-Madre Neurales/metabolismo , Animales , Biomarcadores/metabolismo , Diferenciación Celular , Línea Celular , Separación Celular/métodos , Dopamina/metabolismo , Neuronas Dopaminérgicas/citología , Embrión de Mamíferos , Receptor 1 de Folato/metabolismo , Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Mesencéfalo/citología , Ratones , Células Madre Embrionarias de Ratones/citología , Células-Madre Neurales/citología , Neurogénesis/genética , Neuroglía/citología , Neuroglía/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...