Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
2.
Sci Rep ; 13(1): 21810, 2023 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-38071323

RESUMEN

The scale and duration of neutralizing antibody responses targeting SARS-CoV-2 viral variants represents a critically important serological parameter that predicts protective immunity for COVID-19. In this study, we describe the development and employment of a new functional assay that measures neutralizing antibodies for SARS-CoV-2 and present longitudinal data illustrating the impact of age, sex and comorbidities on the kinetics and strength of vaccine-induced antibody responses for key variants in an Asian volunteer cohort. We also present an accurate quantitation of serological responses for SARS-CoV-2 that exploits a unique set of in-house, recombinant human monoclonal antibodies targeting the viral Spike and nucleocapsid proteins and demonstrate a reduction in neutralizing antibody titres across all groups 6 months post-vaccination. We also observe a marked reduction in the serological binding activity and neutralizing responses targeting recently newly emerged Omicron variants including XBB 1.5 and highlight a significant increase in cross-protective neutralizing antibody responses following a third dose (boost) of vaccine. These data illustrate how key virological factors such as immune escape mutations combined with host demographic factors such as age and sex of the vaccinated individual influence the strength and duration of cross-protective serological immunity for COVID-19.


Asunto(s)
COVID-19 , Vacunas , Humanos , SARS-CoV-2 , Anticuerpos ampliamente neutralizantes , COVID-19/prevención & control , Anticuerpos Neutralizantes , Empleo , Vacunación , Anticuerpos Antivirales
4.
Transplant Direct ; 9(10): e1537, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37745946

RESUMEN

Background: Immunocompromised individuals have been excluded from landmark studies of messenger RNA vaccinations for severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). In such patients, the response to vaccination may be blunted and may wane more quickly compared with immunocompetent patients. We studied the factors associated with decreased antibody response to SARS-CoV-2 vaccination and risk factors for subsequent breakthrough infections in liver transplant (LT) patients undergoing coronavirus disease 2019 vaccination with at least 2 doses of messenger RNA vaccine from April 28, 2021, to April 28, 2022. Methods: All LT recipients received at least 2 doses of the BNT162b2 (Pfizer BioNTech) vaccine 21 d apart. We measured the antibody response against the SARS-CoV-2 spike protein using the Roche Elecsys immunoassay to the receptor-binding domain of the SARS-CoV-2 spike protein, and the presence of neutralizing antibodies was measured by the surrogate virus neutralization test (cPass) before first and second doses of vaccination and also between 2 and 3 mo after the second dose of vaccination. Results: Ninety-three LT recipients who received 2 doses of BNT162b2 were included in the analysis. The mean time from LT was 110 ± 154 mo. After 2-dose vaccination, 38.7% of LT recipients (36/93) were vaccine nonresponders on the cPass assay compared with 20.4% (19/93) on the Roche S assay. On multivariable analysis, increased age and increased tacrolimus trough were found to be associated with poor neutralizing antibody response (P = 0.038 and 0.022, respectively). The use of antimetabolite therapy in conjunction with tacrolimus approached statistical significance (odds ratio 0.21; 95% confidence interval, 0.180-3.72; P = 0.062). Breakthrough infection occurred in 18 of 88 LT recipients (20.4%). Female gender was independently associated with breakthrough infections (P < 0.001). Conclusions: Among LT recipients, older age and higher tacrolimus trough levels were associated with poorer immune response to 2-dose SARS-CoV-2 vaccination. Further studies are needed to assess variables associated with breakthrough infections and, hence, who should be prioritized for booster vaccination.

6.
Front Microbiol ; 13: 1043049, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36483199

RESUMEN

Introduction: COVID-19 has a wide disease spectrum ranging from asymptomatic to severe. While humoral immune responses are critical in preventing infection, the immune mechanisms leading to severe disease, and the identification of biomarkers of disease progression and/or resolution of the infection remains to be determined. Methods: Plasma samples were obtained from infections during the initial wave of ancestral wildtype SARS-CoV-2 and from vaccine breakthrough infections during the wave of Delta variant, up to six months post infection. The spike-specific antibody profiles were compared across different severity groups and timepoints. Results: We found an association between spike-specific IgM, IgA and IgG and disease severity in unvaccinated infected individuals. In addition to strong IgG1 and IgG3 response, patients with severe disease develop a robust IgG2 and IgG4 response. A comparison of the ratio of IgG1 and IgG3 to IgG2 and IgG4 showed that disease progression is associated with a smaller ratio in both the initial wave of WT and the vaccine breakthrough Delta infections. Time-course analysis revealed that smaller (IgG1 and IgG3)/(IgG2 and IgG4) ratio is associated with disease progression, while the reverse associates with clinical recovery. Discussion: While each IgG subclass is associated with disease severity, the balance within the four IgG subclasses may affect disease outcome. Acute disease progression or infection resolution is associated with a specific immunological phenotype that is conserved in both the initial wave of WT and the vaccine breakthrough Delta infections.

7.
J Med Virol ; 94(6): 2460-2470, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35171507

RESUMEN

Coronavirus Disease 2019 (COVID-19) serology has an evolving role in the diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, its use in hospitalized patients with acute respiratory symptoms remains unclear. Hospitalized patients with acute respiratory illness admitted to an isolation ward were recruited. All patients had negative nasopharyngeal swab polymerase chain reaction (PCR) for SARS-CoV-2. Serological studies using four separate assays (cPass: surrogate neutralizing enzyme-linked immunosorbent assay [ELISA]; Elecsys: N-antigen based chemiluminescent assay; SFB: S protein flow-based; epitope peptide-based ELISA) were performed on stored plasma collected from patients during the initial hospital stay, and a convalescent visit 4-12 weeks later. Of the 51 patients studied (aged 54, interquartile range 21-84; 62.7% male), no patients tested positive on the Elecsys or cPass assays. Out of 51 patients, 5 had antibodies detected on B-cell Epitope Assay and 3/51 had antibodies detected on SFB assay. These 8 patients with positive serological test to COVID-19 were more likely to have a high-risk occupation (p = 0.039), bacterial infection (p = 0.028), and neutrophilia (p = 0.013) during their initial hospital admission. Discrepant COVID-19 serological findings were observed among those with recent hospital admissions and bacterial infections. The positive serological findings within our cohort raise important questions about the interpretation of sero-epidemiology during the current pandemic.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , COVID-19/diagnóstico , Ensayo de Inmunoadsorción Enzimática , Femenino , Fiebre , Humanos , Masculino , Pandemias , Reacción en Cadena de la Polimerasa , SARS-CoV-2/genética
8.
Indoor Air ; 32(1): e12930, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34519380

RESUMEN

Reliable methods to detect the presence of SARS-CoV-2 at venues where people gather are essential for epidemiological surveillance to guide public policy. Communal screening of air in a highly crowded space has the potential to provide early warning on the presence and potential transmission of SARS-CoV-2 as suggested by studies early in the epidemic. As hospitals and public facilities apply varying degrees of restrictions and regulations, it is important to provide multiple methodological options to enable environmental SARS-CoV-2 surveillance under different conditions. This study assessed the feasibility of using high-flowrate air samplers combined with RNA extraction kit designed for environmental sample to perform airborne SARS-CoV-2 surveillance in hospital setting, tested by RT-qPCR. The success rate of the air samples in detecting SARS-CoV-2 was then compared with surface swab samples collected in the same proximity. Additionally, positive RT-qPCR samples underwent viral culture to assess the viability of the sampled SARS-CoV-2. The study was performed in inpatient ward environments of a quaternary care university teaching hospital in Singapore housing active COVID-19 patients within the period of February to May 2020. Two types of wards were tested, naturally ventilated open-cohort ward and mechanically ventilated isolation ward. Distances between the site of air sampling and the patient cluster in the investigated wards were also recorded. No successful detection of airborne SARS-CoV-2 was recorded when 50 L/min air samplers were used. Upon increasing the sampling flowrate to 150 L/min, our results showed a high success rate in detecting the presence of SARS-CoV-2 from the air samples (72%) compared to the surface swab samples (9.6%). The positive detection rate of the air samples along with the corresponding viral load could be associated with the distance between sampling site and patient. The furthest distance from patient with PCR-positive air samples was 5.5 m. The airborne SARS-CoV-2 detection was comparable between the two types of wards with 60%-87.5% success rate. High prevalence of the virus was found in toilet areas, both on surfaces and in air. Finally, no successful culture attempt was recorded from the environmental air or surface samples.


Asunto(s)
Microbiología del Aire , Contaminación del Aire Interior , Hospitales , SARS-CoV-2/aislamiento & purificación , COVID-19 , Humanos , ARN Viral , Manejo de Especímenes
9.
J Clin Immunol ; 42(2): 214-229, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34716845

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that have become dominant as the pandemic progresses bear the ORF8 mutation together with multiple spike mutations. A 382-nucleotide deletion (Δ382) in the ORF7b and ORF8 regions has been associated with milder disease phenotype and less systemic inflammation in COVID-19 patients. However, its impact on host immunity against SARS-CoV-2 remains undefined. Here, RNA-sequencing was performed to elucidate whole blood transcriptomic profiles and identify contrasting immune signatures between patients infected with either wildtype or Δ382 SARS-CoV-2 variant. Interestingly, the immune landscape of Δ382 SARS-CoV-2 infected patients featured an increased adaptive immune response, evidenced by enrichment of genes related to T cell functionality, a more robust SARS-CoV-2-specific T cell immunity, as well as a more rapid antibody response. At the molecular level, eukaryotic initiation factor 2 signaling was found to be upregulated in patients bearing Δ382, and its associated genes were correlated with systemic levels of T cell-associated and pro-inflammatory cytokines. This study provides more in-depth insight into the host-pathogen interactions of ORF8 with great promise as a therapeutic target to combat SARS-CoV-2 infection.


Asunto(s)
Inmunidad Adaptativa/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Citocinas/inmunología , Interacciones Huésped-Patógeno/inmunología , Humanos , Inflamación/inmunología , Mutación/inmunología , Pandemias/prevención & control , Linfocitos T/inmunología
10.
Infect Control Hosp Epidemiol ; 43(9): 1245-1248, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34016198

RESUMEN

We estimated the annual bed days lost and economic burden of healthcare-associated infections to Singapore hospitals using Monte Carlo simulation. The mean (standard deviation) cost of a single healthcare-associated infection was S$1,809 (S$440) [or US$1,362 (US$331)]. This translated to annual lost bed days and economic burden of 55,978 (20,506) days and S$152.0 million (S$37.1 million) [or US$114.4 million (US$27.9 million)], respectively.


Asunto(s)
Infección Hospitalaria , Estrés Financiero , Costo de Enfermedad , Infección Hospitalaria/epidemiología , Atención a la Salud , Hospitales Públicos , Humanos , Singapur/epidemiología
11.
Brain Behav Immun Health ; 19: 100406, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34927105

RESUMEN

The COVID-19 pandemic has had an unprecedented impact on healthcare systems globally, giving rise to significant morbidity and mortality. Vaccination has been widely regarded as the most important strategy to contain the pandemic. Whilst local side-effects of the BNT-162b2 (Pfizer-BioNTech) vaccine are well known, concern has emerged due to sporadic reports of immune-mediated adverse effects (Cines and Bussel, 2021; Rela et al., 2021). As of August 19, 2021, 4.54 million individuals had received COVID-19 vaccines in Singapore (Oxford Martin School UoO, 2021). We report a case series of two patients who developed aseptic meningitis after vaccination.

14.
Biosens Bioelectron ; 194: 113629, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34534949

RESUMEN

Accurate and accessible nucleic acid diagnostics is critical to reducing the spread of COVID-19 and resuming socioeconomic activities. Here, we present an integrated platform for the direct detection of SARS-CoV-2 RNA targets near patients. Termed electrochemical system integrating reconfigurable enzyme-DNA nanostructures (eSIREN), the technology leverages responsive molecular nanostructures and automated microfluidics to seamlessly transduce target-induced molecular activation into an enhanced electrochemical signal. Through responsive enzyme-DNA nanostructures, the technology establishes a molecular circuitry that directly recognizes specific RNA targets and catalytically enhances signaling; only upon target hybridization, the molecular nanostructures activate to liberate strong enzymatic activity and initiate cascading reactions. Through automated microfluidics, the system coordinates and interfaces the molecular circuitry with embedded electronics; its pressure actuation and liquid-guiding structures improve not only analytical performance but also automated implementation. The developed platform establishes a detection limit of 7 copies of RNA target per µl, operates against the complex biological background of native patient samples, and is completed in <20 min at room temperature. When clinically evaluated, the technology demonstrates accurate detection in extracted RNA samples and direct swab lysates to diagnose COVID-19 patients.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Nanoestructuras , Humanos , Microfluídica , ARN Viral/genética , SARS-CoV-2
15.
Adv Sci (Weinh) ; 8(18): e2101155, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34278742

RESUMEN

Accessible and adaptable nucleic acid diagnostics remains a critical challenge in managing the evolving COVID-19 pandemic. Here, an integrated molecular nanotechnology that enables direct and programmable detection of SARS-CoV-2 RNA targets in native patient specimens is reported. Termed synergistic coupling of responsive equilibrium in enzymatic network (SCREEN), the technology leverages tunable, catalytic molecular nanostructures to establish an interconnected, collaborative architecture. SCREEN mimics the extraordinary organization and functionality of cellular signaling cascades. Through programmable enzyme-DNA nanostructures, SCREEN activates upon interaction with different RNA targets to initiate multi-enzyme catalysis; through system-wide favorable equilibrium shifting, SCREEN directly transduces a single target binding into an amplified electrical signal. To establish collaborative equilibrium coupling in the architecture, a computational model that simulates all reactions to predict overall performance and optimize assay configuration is developed. The developed platform achieves direct and sensitive RNA detection (approaching single-copy detection), fast response (assay reaction is completed within 30 min at room temperature), and robust programmability (across different genetic loci of SARS-CoV-2). When clinically evaluated, the technology demonstrates robust and direct detection in clinical swab lysates to accurately diagnose COVID-19 patients.


Asunto(s)
COVID-19/virología , ADN Catalítico/genética , Nanoestructuras/química , SARS-CoV-2/genética , Humanos , Límite de Detección , Técnicas de Diagnóstico Molecular/métodos , Nanotecnología/métodos , Pandemias/prevención & control , ARN Viral/genética , Manejo de Especímenes/métodos
16.
Front Immunol ; 12: 680188, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34262564

RESUMEN

A significant proportion of COVID-19 patients will progress to critical illness requiring invasive mechanical ventilation. This accentuates the need for a therapy that can reduce the severity of COVID-19. Clinical trials have shown the effectiveness of remdesivir in shortening recovery time and decreasing progression to respiratory failure and mechanical ventilation. However, some studies have highlighted its lack of efficacy in patients on high-flow oxygen and mechanical ventilation. This study uncovers some underlying immune response differences between responders and non-responders to remdesivir treatment. Immunological analyses revealed an upregulation of tissue repair factors BDNF, PDGF-BB and PIGF-1, as well as an increase in ratio of Th2-associated cytokine IL-4 to Th1-associated cytokine IFN-γ. Serological profiling of IgG subclasses corroborated this observation, with significantly higher magnitude of increase in Th2-associated IgG2 and IgG4 responses. These findings help to identify the mechanisms of immune regulation accompanying successful remdesivir treatment in severe COVID-19 patients.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Citocinas/sangre , Hospitalización , SARS-CoV-2/genética , Adenosina Monofosfato/uso terapéutico , Adulto , Anciano , Alanina/uso terapéutico , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Becaplermina/sangre , Factor Neurotrófico Derivado del Encéfalo/sangre , COVID-19/sangre , COVID-19/inmunología , Estudios de Casos y Controles , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Masculino , Proteínas de la Membrana/sangre , Persona de Mediana Edad , Estudios Prospectivos , Glicoproteína de la Espiga del Coronavirus/inmunología , Resultado del Tratamiento
17.
J Clin Invest ; 131(15)2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34128838

RESUMEN

BACKGROUNDMatrix metalloproteinases (MMPs) are key regulators of tissue destruction in tuberculosis (TB) and may be targets for host-directed therapy. We conducted a phase II double-blind, randomized, controlled trial investigating doxycycline, a licensed broad-spectrum MMP inhibitor, in patients with pulmonary TB.METHODSThirty patients with pulmonary TB were enrolled within 7 days of initiating anti-TB treatment and randomly assigned to receive either 100 mg doxycycline or placebo twice a day for 14 days, in addition to standard care.RESULTSWhole blood RNA-sequencing demonstrated that doxycycline accelerated restoration of dysregulated gene expression in TB towards normality, rapidly down-regulating type I and II interferon and innate immune response genes, and up-regulating B-cell modules relative to placebo. The effects persisted for 6 weeks after doxycycline discontinuation, concurrent with suppressed plasma MMP-1. Doxycycline significantly reduced sputum MMP-1, -8, -9, -12 and -13, suppressed type I collagen and elastin destruction, reduced pulmonary cavity volume without altering sputum mycobacterial loads, and was safe.CONCLUSIONAdjunctive doxycycline with standard anti-TB treatment suppressed pathological MMPs in PTB patients. Larger studies on adjunctive doxycycline to limit TB immunopathology are merited.TRIAL REGISTRATIONClinicalTrials.gov NCT02774993.FUNDINGSingapore National Medical Research Council (NMRC/CNIG/1120/2014, NMRC/Seedfunding/0010/2014, NMRC/CISSP/2015/009a); the Singapore Infectious Diseases Initiative (SIDI/2013/013); National University Health System (PFFR-28 January 14, NUHSRO/2014/039/BSL3-SeedFunding/Jul/01); the Singapore Immunology Network Immunomonitoring platform (BMRC/IAF/311006, H16/99/b0/011, NRF2017_SISFP09); an ExxonMobil Research Fellowship, NUHS Clinician Scientist Program (NMRC/TA/0042/2015, CSAINV17nov014); the UK Medical Research Council (MR/P023754/1, MR/N006631/1); a NUS Postdoctoral Fellowship (NUHSRO/2017/073/PDF/03); The Royal Society Challenge Grant (CHG\R1\170084); the Sir Henry Dale Fellowship, Wellcome Trust (109377/Z/15/Z); and A*STAR.


Asunto(s)
Colagenasas/biosíntesis , Doxiciclina/administración & dosificación , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , RNA-Seq , Tuberculosis Pulmonar , Adulto , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/enzimología
18.
EBioMedicine ; 66: 103319, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33840632

RESUMEN

BACKGROUND: Host determinants of severe coronavirus disease 2019 include advanced age, comorbidities and male sex. Virologic factors may also be important in determining clinical outcome and transmission rates, but limited patient-level data is available. METHODS: We conducted an observational cohort study at seven public hospitals in Singapore. Clinical and laboratory data were collected and compared between individuals infected with different SARS-CoV-2 clades. Firth's logistic regression was used to examine the association between SARS-CoV-2 clade and development of hypoxia, and quasi-Poisson regression to compare transmission rates. Plasma samples were tested for immune mediator levels and the kinetics of viral replication in cell culture were compared. FINDINGS: 319 patients with PCR-confirmed SARS-CoV-2 infection had clinical and virologic data available for analysis. 29 (9%) were infected with clade S, 90 (28%) with clade L/V, 96 (30%) with clade G (containing D614G variant), and 104 (33%) with other clades 'O' were assigned to lineage B.6. After adjusting for age and other covariates, infections with clade S (adjusted odds ratio (aOR) 0·030 (95% confidence intervals (CI): 0·0002-0·29)) or clade O (B·6) (aOR 0·26 (95% CI 0·064-0·93)) were associated with lower odds of developing hypoxia requiring supplemental oxygen compared with clade L/V. Patients infected with clade L/V had more pronounced systemic inflammation with higher concentrations of pro-inflammatory cytokines, chemokines and growth factors. No significant difference in the severity of clade G infections was observed (aOR 0·95 (95% CI: 0·35-2·52). Though viral loads were significantly higher, there was no evidence of increased transmissibility of clade G, and replicative fitness in cell culture was similar for all clades. INTERPRETATION: Infection with clades L/V was associated with increased severity and more systemic release of pro-inflammatory cytokines. Infection with clade G was not associated with changes in severity, and despite higher viral loads there was no evidence of increased transmissibility.


Asunto(s)
COVID-19/etiología , COVID-19/transmisión , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Adulto , Factores de Edad , Anciano , COVID-19/epidemiología , COVID-19/inmunología , Comorbilidad , Femenino , Humanos , Hipoxia/terapia , Hipoxia/virología , Masculino , Persona de Mediana Edad , Singapur/epidemiología , Carga Viral
19.
Sci Adv ; 7(12)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33731349

RESUMEN

Despite the importance of nucleic acid testing in managing the COVID-19 pandemic, current detection approaches remain limited due to their high complexity and extensive processing. Here, we describe a molecular nanotechnology that enables direct and sensitive detection of viral RNA targets in native clinical samples. The technology, termed catalytic amplification by transition-state molecular switch (CATCH), leverages DNA-enzyme hybrid complexes to form a molecular switch. By ratiometric tuning of its constituents, the multicomponent molecular switch is prepared in a hyperresponsive state-the transition state-that can be readily activated upon the binding of sparse RNA targets to turn on substantial enzymatic activity. CATCH thus achieves superior performance (~8 RNA copies/µl), direct fluorescence detection that bypasses all steps of PCR (<1 hour at room temperature), and versatile implementation (high-throughput 96-well format and portable microfluidic assay). When applied for clinical COVID-19 diagnostics, CATCH demonstrated direct and accurate detection in minimally processed patient swab samples.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19 , COVID-19 , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas , Pruebas en el Punto de Atención , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/genética , Prueba de Ácido Nucleico para COVID-19/instrumentación , Prueba de Ácido Nucleico para COVID-19/métodos , Humanos , Límite de Detección
20.
Elife ; 102021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33752798

RESUMEN

Numerous reports of vascular events after an initial recovery from COVID-19 form our impetus to investigate the impact of COVID-19 on vascular health of recovered patients. We found elevated levels of circulating endothelial cells (CECs), a biomarker of vascular injury, in COVID-19 convalescents compared to healthy controls. In particular, those with pre-existing conditions (e.g., hypertension, diabetes) had more pronounced endothelial activation hallmarks than non-COVID-19 patients with matched cardiovascular risk. Several proinflammatory and activated T lymphocyte-associated cytokines sustained from acute infection to recovery phase, which correlated positively with CEC measures, implicating cytokine-driven endothelial dysfunction. Notably, we found higher frequency of effector T cells in our COVID-19 convalescents compared to healthy controls. The activation markers detected on CECs mapped to counter receptors found primarily on cytotoxic CD8+ T cells, raising the possibility of cytotoxic effector cells targeting activated endothelial cells. Clinical trials in preventive therapy for post-COVID-19 vascular complications may be needed.


Asunto(s)
COVID-19/complicaciones , Enfermedades Cardiovasculares/etiología , Endotelio Vascular/patología , Activación de Linfocitos , Adulto , Anciano , COVID-19/inmunología , COVID-19/patología , Enfermedades Cardiovasculares/inmunología , Enfermedades Cardiovasculares/patología , Citocinas/inmunología , Células Endoteliales/inmunología , Células Endoteliales/patología , Endotelio Vascular/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...