Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(27): 11943-11948, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35767718

RESUMEN

Spin-orbit coupling enables the realization of topologically nontrivial ground states. As spin-orbit coupling increases with increasing atomic number, compounds featuring heavy elements, such as lead, offer a pathway toward creating new topologically nontrivial materials. By employing a high-pressure flux synthesis method, we synthesized single crystals of Ni3Pb2, the first structurally characterized bulk binary phase in the Ni-Pb system. Combining experimental and theoretical techniques, we examined structure and bonding in Ni3Pb2, revealing the impact of chemical substitutions on electronic structure features of importance for controlling topological behavior. From these results, we determined that Ni3Pb2 completes a series of structurally related transition-metal-heavy main group intermetallic materials that exhibit diverse electronic structures, opening a platform for synthetically tunable topologically nontrivial materials.

2.
J Am Chem Soc ; 143(1): 214-222, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33372790

RESUMEN

Incorporating bismuth, the heaviest element stable to radioactive decay, into new materials enables the creation of emergent properties such as permanent magnetism, superconductivity, and nontrivial topology. Understanding the factors that drive Bi reactivity is critical for the realization of these properties. Using pressure as a tunable synthetic vector, we can access unexplored regions of phase space to foster reactivity between elements that do not react under ambient conditions. Furthermore, combining computational and experimental methods for materials discovery at high-pressures provides broader insight into the thermodynamic landscape than can be achieved through experiment alone, informing our understanding of the dominant chemical factors governing structure formation. Herein, we report our combined computational and experimental exploration of the Mo-Bi system, for which no binary intermetallic structures were previously known. Using the ab initio random structure searching (AIRSS) approach, we identified multiple synthetic targets between 0-50 GPa. High-pressure in situ powder X-ray diffraction experiments performed in diamond anvil cells confirmed that Mo-Bi mixtures exhibit rich chemistry upon the application of pressure, including experimental realization of the computationally predicted CuAl2-type MoBi2 structure at 35.8(5) GPa. Electronic structure and phonon dispersion calculations on MoBi2 revealed a correlation between valence electron count and bonding in high-pressure transition metal-Bi structures as well as identified two dynamically stable ambient pressure polymorphs. Our study demonstrates the power of the combined computational-experimental approach in capturing high-pressure reactivity for efficient materials discovery.

3.
Angew Chem Int Ed Engl ; 57(39): 12809-12813, 2018 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-30252191

RESUMEN

Materials discovery enables both realization and understanding of new, exotic, physical phenomena. An emerging approach to the discovery of novel phases is high-pressure synthesis within diamond anvil cells, thereby enabling in situ monitoring of phase formation. Now, the discovery via high-pressure synthesis of the first intermetallic compound in the Cu-Pb system, Cu3Pb is reported. Cu3Pb is notably the first structurally characterized mid- to late-first-row transition-metal plumbide. The structure of Cu3Pb can be envisioned as a direct mixture of the two elemental lattices. From this new framework, we gain insight into the structure as a function of pressure and hypothesize that the high-pressure polymorph of lead is a possible prerequisite for the formation of Cu3Pb. Crucially, electronic structure computations reveal band crossings near the Fermi level, suggesting that chemically doped Cu3Pb could be a topologically nontrivial material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...