Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Regul Integr Comp Physiol ; 326(6): R499-R506, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38574344

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been especially devastating to patients with comorbidities, including metabolic and cardiovascular diseases. Elevated blood glucose during SARS-CoV-2 infection increased mortality of patients with COVID-19, although the mechanisms are not well understood. It has been previously demonstrated that glucose transport and utilization is a crucial pathway for other highly infectious RNA viruses. Thus, we hypothesized that SARS-CoV-2 infection could lead to alterations in cellular and whole body glucose metabolism. Specific pathogen-free domestic cats were intratracheally inoculated with USA-WA1/2020 (wild-type) SARS-CoV-2 or vehicle-inoculated, then euthanized at 4- and 8-days postinoculation (dpi). Blood glucose and cortisol concentrations were elevated at 4 and 8 dpi. Blood ketones, insulin, and angiotensin II concentrations remained unchanged throughout the experimental timeline. SARS-CoV-2 RNA was detected in the lung and heart, without changes in angiotensin-converting enzyme 2 (ACE2) RNA expression. In the lung, SARS-CoV-2 infection increased glucose transporter 1 (GLUT1) protein levels at 4 and 8 dpi, whereas GLUT4 level was only upregulated at 8 dpi. In the heart, GLUT-1 and -4 protein levels remained unchanged. Furthermore, GLUT1 level was upregulated in the skeletal muscle at 8 dpi, and AMPK was activated in the hearts of infected cats. SARS-CoV-2 infection increased blood glucose concentration and pulmonary GLUT protein levels. These findings suggest that SARS-CoV-2 infection induces metabolic reprogramming primarily in the lung to support viral replication. Furthermore, this translational feline model mimicked human COVID-19 and could be used to explore novel therapeutic targets to treat metabolic disease during SARS-CoV-2 infection.NEW & NOTEWORTHY Our study on a feline model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, mirroring human COVID-19, revealed alterations in whole body and cellular glucose metabolism. Infected cats developed mild hyperglycemia, increased protein levels of glucose transporters in the lung, and AMPK activation in the heart. These findings suggest that SARS-CoV-2 infection induces metabolic reprogramming in the cardiorespiratory system to support viral replication. Understanding these mechanisms could lead to novel antiviral therapeutic strategies.


Asunto(s)
COVID-19 , Modelos Animales de Enfermedad , SARS-CoV-2 , Animales , Gatos , COVID-19/metabolismo , COVID-19/virología , Glucemia/metabolismo , Glucosa/metabolismo , Pulmón/metabolismo , Pulmón/virología , Masculino
2.
Vaccines (Basel) ; 11(3)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36992157

RESUMEN

Cytauxzoonosis is caused by Cytauxzoon felis (C. felis), a tick-borne parasite that causes severe disease in domestic cats in the United States. Currently, there is no vaccine to prevent this fatal disease, as traditional vaccine development strategies have been limited by the inability to culture this parasite in vitro. Here, we used a replication-defective human adenoviral vector (AdHu5) to deliver C. felis-specific immunogenic antigens and induce a cell-mediated and humoral immune response in cats. Cats (n = 6 per group) received either the vaccine or placebo in two doses, 4 weeks apart, followed by experimental challenge with C. felis at 5 weeks post-second dose. While the vaccine induced significant cell-mediated and humoral immune responses in immunized cats, it did not ultimately prevent infection with C. felis. However, immunization significantly delayed the onset of clinical signs and reduced febrility during C. felis infection. This AdHu5 vaccine platform shows promising results as a vaccination strategy against cytauxzoonosis.

3.
Viruses ; 14(6)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35746678

RESUMEN

Continued emergence of SARS-CoV-2 variants highlights the critical need for adaptable and translational animal models for acute COVID-19. Limitations to current animal models for SARS CoV-2 (e.g., transgenic mice, non-human primates, ferrets) include subclinical to mild lower respiratory disease, divergence from clinical COVID-19 disease course, and/or the need for host genetic modifications to permit infection. We therefore established a feline model to study COVID-19 disease progression and utilized this model to evaluate infection kinetics and immunopathology of the rapidly circulating Delta variant (B.1.617.2) of SARS-CoV-2. In this study, specific-pathogen-free domestic cats (n = 24) were inoculated intranasally and/or intratracheally with SARS CoV-2 (B.1.617.2). Infected cats developed severe clinical respiratory disease and pulmonary lesions at 4- and 12-days post-infection (dpi), even at 1/10 the dose of previously studied wild-type SARS-CoV-2. Infectious virus was isolated from nasal secretions of delta-variant infected cats in high amounts at multiple timepoints, and viral antigen was co-localized in ACE2-expressing cells of the lungs (pneumocytes, vascular endothelium, peribronchial glandular epithelium) and strongly associated with severe pulmonary inflammation and vasculitis that were more pronounced than in wild-type SARS-CoV-2 infection. RNA sequencing of infected feline lung tissues identified upregulation of multiple gene pathways associated with cytokine receptor interactions, chemokine signaling, and viral protein-cytokine interactions during acute infection with SARS-CoV-2. Weighted correlation network analysis (WGCNA) of differentially expressed genes identified several distinct clusters of dysregulated hub genes that are significantly correlated with both clinical signs and lesions during acute infection. Collectively, the results of these studies help to delineate the role of domestic cats in disease transmission and response to variant emergence, establish a flexible translational model to develop strategies to prevent the spread of SARS-CoV-2, and identify potential targets for downstream therapeutic development.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Gatos , Hurones , Cinética , Ratones
4.
Viruses ; 13(8)2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34452415

RESUMEN

The emergence and ensuing dominance of COVID-19 on the world stage has emphasized the urgency of efficient animal models for the development of therapeutics for and assessment of immune responses to SARS-CoV-2 infection. Shortcomings of current animal models for SARS-CoV-2 include limited lower respiratory disease, divergence from clinical COVID-19 disease, and requirements for host genetic modifications to permit infection. In this study, n = 12 specific-pathogen-free domestic cats were infected intratracheally with SARS-CoV-2 to evaluate clinical disease, histopathologic lesions, and viral infection kinetics at 4 and 8 days post-inoculation; n = 6 sham-inoculated cats served as controls. Intratracheal inoculation of SARS-CoV-2 produced a significant degree of clinical disease (lethargy, fever, dyspnea, and dry cough) consistent with that observed in the early exudative phase of COVID-19. Pulmonary lesions such as diffuse alveolar damage, hyaline membrane formation, fibrin deposition, and proteinaceous exudates were also observed with SARS-CoV-2 infection, replicating lesions identified in people hospitalized with ARDS from COVID-19. A significant correlation was observed between the degree of clinical disease identified in infected cats and pulmonary lesions. Viral loads and ACE2 expression were also quantified in nasal turbinates, distal trachea, lungs, and other organs. Results of this study validate a feline model for SARS-CoV-2 infection that results in clinical disease and histopathologic lesions consistent with acute COVID-19 in humans, thus encouraging its use for future translational studies.


Asunto(s)
COVID-19 , Gatos , Modelos Animales de Enfermedad , SARS-CoV-2/fisiología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/patología , COVID-19/fisiopatología , COVID-19/virología , Femenino , Genoma Viral , Humanos , Pulmón/enzimología , Pulmón/patología , Pulmón/virología , Ganglios Linfáticos/virología , Masculino , ARN Viral/análisis , SARS-CoV-2/genética , Organismos Libres de Patógenos Específicos , Tráquea/enzimología , Tráquea/virología , Cornetes Nasales/enzimología , Cornetes Nasales/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...