Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
4.
Cureus ; 16(4): e58425, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38756274

RESUMEN

Aim The aim of this study is to examine the possible therapeutic effect of pterostilbene (PTS), a chemical present in grapes and blueberries, in the treatment of liver cancer by analysing its interactions with important proteins linked to the wingless/integrated (Wnt) signaling system. Objective Using computational techniques like molecular docking and absorption, distribution, metabolism, and excretion (ADME) studies, this research focuses on examining the pharmacokinetics and molecular interactions of PTS with proteins such as vimentin (Vim), glycogen synthase kinase 3 beta (GSK3-ß), epithelial cadherin (E-cadherin), interleukin-6 (IL-6), interleukin-1 beta (IL-1ß), c-Jun N-terminal kinase (JNK), and Wnt, all of which are connected to the Wnt signaling pathway in liver cancer. Methods The study includes the synthesis of proteins and ligands, ADME investigations for PTS, and AutoDock Vina molecular docking simulations to evaluate binding affinities and interactions. PTS is obtained from PubChem, while protein structures are obtained from the Protein Data Bank. Results Strong binding affinities between PTS and essential proteins in the Wnt signaling cascade are shown by molecular docking, which also highlights noteworthy hydrogen bonds, hydrophobic interactions, and electrostatic contacts. According to an ADME study, PTS has advantageous pharmacokinetic properties, such as moderate solubility, membrane permeability, and a minimal chance of drug interactions. Conclusion The extensive study highlights PTS's potential as a viable treatment option for liver cancer. The study promotes its investigation in cutting-edge liver cancer therapy approaches and urges more investigation into the molecular mechanisms, underpinning its anticancer properties. This paper sheds important light on the role of natural chemicals in cancer therapy and emphasizes the need for computational methods in drug discovery.

5.
Cureus ; 16(3): e57151, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38681365

RESUMEN

Introduction: The global viral pandemic has rapidly spread, leading to many individuals experiencing the infection. Coronaviruses (CoVs) are among many viral families that infect different types of mammals. They can spread to humans and cause gastrointestinal, neurological, and respiratory problems. The present investigation has discovered flavonoid compounds as promising molecular agents with potential antiviral activity against virus proteins, specifically main protease (Mpro). Methodology: A comprehensive in silico screening of natural compounds derived from medicinal plants was performed in the present study. It included parameter assessments such as drug-likeness, pharmacokinetics, molecular docking, toxicity evaluations, bioavailability assessments, and molecular target exploration. In this systematic approach, the primary objective was to identify potential lead compounds. These phytochemicals were investigated as drug candidates to provide a detailed understanding of their molecular properties. Results: The Mpro binding energy values were -10.637, -12.752, -7.813, -15.732, -6.449, -5.578, -8.037, and -8.52 kcal/mol for isoquercetin, narirutin, myricetin, hesperidin, silibinin, baicalein, taxifolin, and petunidin. Molecular simulations were conducted on two flavonoid compounds - hesperidin and narirutin - stable over 100 nanoseconds in the Coronavirus protein. Conclusions: The computational study we conducted is promising, but to validate the action of these compounds, further experimental studies are needed, with a critical component of the research being the conduct of in vitro and in vivo experiments.

6.
Cureus ; 16(3): e55605, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38586722

RESUMEN

Introduction  Nanoparticles, owing to their minuscule size, have become pivotal in diverse scientific endeavors, presenting unique characteristics with applications spanning medicine to environmental science. Selenium nanoparticles (SeNPs) exhibit potential in diverse biomedical uses. Aim This research investigates the potential anti-inflammatory and anticancer properties of SeNPs, which are synthesized using the green synthesis method. This eco-friendly approach aligns with sustainable practices and utilizes clove extract (Syzygium aromaticum). Materials and methods Clove extract facilitates SeNP synthesis via sodium selenite reduction. The characterization methods comprised Fourier-transform infrared (FTIR) spectroscopy, UV-VIS spectroscopy, and scanning electron microscopy (SEM). Assessments covered antioxidant properties, chorioallantoic membrane assay (CAM) assay for antiangiogenic effects, toxicity evaluation, and antibacterial assays. Results Successful synthesis of SeNPs was verified by a UV-visible absorption peak at 256 nm and FTIR peaks around 3500-500 cm -1, and the spherical morphology was confirmed by SEM analysis with EDAX, which indicated the presence of SeNPs and their unique properties. Phytochemical substances are active chemicals that contribute to the properties of SeNPs. The SeNPs exhibited antioxidant activity with an IC50 value of 0.437 µg/mL and antibacterial properties against bacterial pathogen Salmonella species, with a zone of inhibition measuring 19 mm. The CAM assay demonstrated possible antiangiogenic actions, and toxicity testing on Artemia nauplii showed biocompatibility. Conclusion This study underscores the efficient synthesis of SeNPs using clove extract, emphasizing their potential applications. The notable properties of SeNPs emphasize their promise for diverse biomedical and environmental uses.

7.
Cureus ; 16(2): e53810, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38465169

RESUMEN

Aim By using molecular docking analysis (MDA) to examine its interactions with important regulatory proteins linked to diabetes, such as glycogen synthase kinase 3 beta (GSK3ß), insulin receptor (IR), and glucose kinase (GCK), this study seeks to explore the therapeutic potential of myricetin, a naturally occurring flavonoid. Objective The main goal is to determine potential effects on insulin signalling, GSK3ß activity, and glucose metabolism by evaluating the binding affinities of myricetin with GCK, IR, and GSK3ß through MDA. In order to assess the drug affinity of myricetin, the study also intends to perform absorption, distribution, metabolism, and excretion (ADME) studies. Materials and methods To model the interaction between myricetin and the target proteins (GCK, IR, and GSK3ß), we used molecular docking analysis with computational tools. ADME studies were also included in the study to evaluate drug affinity. Identification of binding sites, essential residues, and interaction stability were all part of the structural analysis. Results As evidence of possible interactions with these regulatory proteins, myricetin showed positive binding affinities with GCK, IR, and GSK3ß. Strong interactions with important ligand recognition residues were seen in the docking into IR, indicating a potential impact on insulin signalling. Moreover, a strong binding affinity for GCK indicated potential effects on the metabolism of glucose. Studies using ADME confirmed the high drug affinity of myricetin. Conclusion This work sheds light on the multi-target potential of myricetin in the regulation of diabetes. It appears that it has the ability to influence glucose metabolism, suppress GSK3ß activity, and regulate insulin signalling based on its interactions with IR, GSK3ß, and GCK. Although these computational results show promise, more experimental work is necessary to confirm and fully understand the precise mechanisms that underlie myricetin's effects on the regulation of diabetes.

8.
Mycoses ; 67(2): e13707, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38366126

RESUMEN

BACKGROUND: Dermatophytosis is very common among all age groups throughout the world. The incidence of the same is increasing on a steady basis. AIM: Estimating the clinical prevalence of dermatophytes mycoses among the patients visiting the outpatient unit and assessing its distinct manifestations. METHODOLOGY: A prospective observational study was conducted with the patients attending the Skin and STD outpatient unit of a tertiary care teaching hospital in Salem. A total of 3068 outpatients attended the department, of which 420 patients were diagnosed with dermatophytic mycoses and were taken for investigating the prevalence. RESULTS: A total of 420 dermatophytosis patients were included giving a percentage prevalence of 13.69%. There were more female patients (n = 213, 50.71%) than males (n = 207, 49.29%). The most common afflicted age group was 31-40 years (n = 99, 50.71%). Most of the patients had an atypical lesion called tinea incognita (n = 265, 63.09%) where there was no typical classic appearance of dermatophytic infections. The most prevalent clinical manifestation was tinea corporis (n = 73, 17.38%) followed by tinea cruris (n = 69, 16.43%). There were more newly diagnosed dermatophytosis cases (n = 326) than the previously diagnosed cases (n = 94). CONCLUSION: This study concludes that dermatophytic mycoses were more prevalent among females than males and among the age groups of 31-40 years. The most common clinical presentation was tinea incognita followed by tinea corporis.


Asunto(s)
Tiña , Masculino , Humanos , Femenino , Adulto , Prevalencia , Centros de Atención Terciaria , Tiña/epidemiología , Tiña/diagnóstico , India/epidemiología
9.
Cureus ; 16(1): e53098, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38414698

RESUMEN

Background Liver cancer, in particular, is a serious threat to global health and has few viable treatments. One natural molecule that shows potential in cancer therapy is pterostilbene, especially for hepatocellular carcinoma (HCC). The molecular details of pterostilbene's interactions with liver cancer are uncovered in this study using an in silico method. Methodology This study determines the differentially expressed genes (DEGs) in HCC and the way pterostilbene affects them using data from Gene Expression Omnibus (GEO) datasets. To identify the intricate linkages and possible treatment targets, network pharmacology, protein-protein interaction (PPI) analysis, and pathway enrichment investigations were performed. Results The study revealed complex relationships between pterostilbene and liver cancer, identified important DEGs in HCC, and showed enriched pathways. Pterostilbene shows promise as a target for therapeutic approaches in HCC due to its modulation of important signaling pathways. Conclusions This work offers an extensive knowledge of pterostilbene's potential in liver cancer, despite intrinsic computational limitations. In addition to the importance of experimental validation, the pathways and DEGs that have been found provide insightful information for future investigation, highlighting the ongoing research that is necessary to create targeted therapeutics for HCC.

11.
Int J Phytoremediation ; 25(4): 466-482, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35790387

RESUMEN

A pilot-scale treatment method was used in the present study to test the biosorption of textile dye from textile effluent and carbon dioxide using Chlorella vulgaris RDS03. The textile dye effluent treatment achieved that textile dye biosorption capacity (qmax) rate of 98.84% on 15 days of treatment using Chlorella vulgaris RDS03. The Langmuir and Freundlich isotherm kinetics model indicated that the higher R2 value 0.98. The microalga Chlorella vulgaris RDS03 was captured-96.86% of CO2 analyzed by CO2 utilization and biofixation kinetics, 4.65 mgmL-1 of biomass, 189.26 mgg-1 of carbohydrate, 233.89 mgg-1 of lipid, 4.3 mLg-1 of bioethanol and 4.9 mLg-1 of biodiesel produced. We performed fatty acid methyl ester (FAME) profiling using gas chromatography-mass spectrometry (GCMS). We found 40 types of biodiesel compounds, specifically myristic acid, pentadecanoic acid, octadecanoic acid, palmitic acid, and oleic acid. The high-performance liquid chromatography (HPLC) validated and analyzed the produced bioethanol.Novelty of the Research• Unicellular microalga Chlorella vulgaris RDS03 was isolated from the freshwater region and investigated their biosorption efficiency against hazardous synthetic azo textile dyes.• Chlorella vulgaris RDS03 ability to biosorption 96.86% of environmental polluted carbon dioxide• Treated biomass was used to produce ecofriendly, unpolluted and green energy such as biofuels (biodiesel and bioethanol).


Asunto(s)
Chlorella vulgaris , Microalgas , Dióxido de Carbono , Biocombustibles , Biodegradación Ambiental , Biomasa
12.
Int J Phytoremediation ; 22(14): 1462-1479, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32615792

RESUMEN

In present investigation carried out large-scale treatment of tannery effluent by the cultivation of microalgae, Neochloris aquatica RDS02. The tannery effluent treatment revealed that significant reduction heavy metals were chromium-3.59, lead-2.85, nickel-1.9, cadmium-10.68, zinc-4.49, copper-0.95 and cobalt-1.86 mg/L on 15th day of treatment using N. aquatica RDS02. The microalgal biosorption capacity q max rate was Cr-88.66, Pb-75.87, Ni-87.61, Cd-60.44, Co-52.86, Zn-84.90 and Cu-54.39, and isotherm model emphasized that the higher R 2 value 0.99 by Langmuir and Freundlich kinetics model. The microalga utilized highest CO2 (90%) analyzed by CO2 biofixation and utilization kinetics, biomass (3.9 mg/mL), lipid (210 mg mL-1), carbohydrate (102.75 mg mL-1), biodiesel (4.9 mL g-1) and bioethanol (4.1 mL g-1). The microalgal-lipid content was analyzed through Nile red staining. Gas chromatography mass spectrometric (GCMS) analysis confirmed that the presence of a biodiesel and major fatty acid methyl ester (FAME) profiling viz., tridecanoic acid methyl ester, pentadecanoic acid methyl ester, octadecanoic acid methyl ester, myristic acid methyl ester, palmitic acid methyl ester and oleic acid methyl ester. Fourier transform infrared (FTIR) analysis confirmed that the presence of a functional groups viz., phenols, alcohols, alkynes, carboxylic acids, ketones, carbonyl and ester groups. The bioethanol production was confirmed by high-performance liquid chromatography (HPLC) analyze.


Asunto(s)
Microalgas , Aguas Residuales , Biodegradación Ambiental , Biocombustibles , Biomasa , Dióxido de Carbono , Ácidos Grasos , Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA