Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36772638

RESUMEN

This study aims to predict emotions using biosignals collected via wrist-worn sensor and evaluate the performance of different prediction models. Two dimensions of emotions were considered: valence and arousal. The data collected by the sensor were used in conjunction with target values obtained from questionnaires. A variety of classification and regression models were compared, including Long Short-Term Memory (LSTM) models. Additionally, the effects of different normalization methods and the impact of using different sensors were studied, and the way in which the results differed between the study subjects was analyzed. The results revealed that regression models generally performed better than classification models, with LSTM regression models achieving the best results. The normalization method called baseline reduction was found to be the most effective, and when used with an LSTM-based regression model it achieved high accuracy in detecting valence (mean square error = 0.43 and R2-score = 0.71) and arousal (mean square error = 0.59 and R2-score = 0.81). Moreover, it was found that even if all biosignals were not used in the training phase, reliable models could be obtained; in fact, for certain study subjects the best results were obtained using only a few of the sensors.


Asunto(s)
Emociones , Dispositivos Electrónicos Vestibles , Humanos , Muñeca , Nivel de Alerta , Articulación de la Muñeca
2.
Clin Epidemiol ; 15: 13-29, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36636731

RESUMEN

Purpose: To gain an understanding of the heterogeneous group of type 2 diabetes (T2D) patients, we aimed to identify patients with the homogenous long-term HbA1c trajectories and to predict the trajectory membership for each patient using explainable machine learning methods and different clinical-, treatment-, and socio-economic-related predictors. Patients and Methods: Electronic health records data covering primary and specialized healthcare on 9631 patients having T2D diagnosis were extracted from the North Karelia region, Finland. Six-year HbA1c trajectories were examined with growth mixture models. Linear discriminant analysis and neural networks were applied to predict the trajectory membership individually. Results: Three HbA1c trajectories were distinguished over six years: "stable, adequate" (86.5%), "improving, but inadequate" (7.3%), and "fluctuating, inadequate" (6.2%) glycemic control. Prior glucose levels, duration of T2D, use of insulin only, use of insulin together with some oral antidiabetic medications, and use of only metformin were the most important predictors for the long-term treatment balance. The prediction model had a balanced accuracy of 85% and a receiving operating characteristic area under the curve of 91%, indicating high performance. Moreover, the results based on SHAP (Shapley additive explanations) values show that it is possible to explain the outcomes of machine learning methods at the population and individual levels. Conclusion: Heterogeneity in long-term glycemic control can be predicted with confidence by utilizing information from previous HbA1c levels, fasting plasma glucose, duration of T2D, and use of antidiabetic medications. In future, the expected development of HbA1c could be predicted based on the patient's unique risk factors offering a practical tool for clinicians to support treatment planning.

3.
Stud Health Technol Inform ; 281: 268-272, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34042747

RESUMEN

Analyzing clinical data comes with many challenges. Medical expertise combined with statistical and programming knowledge must go hand-in-hand when applying data mining methods on clinical datasets. This work aims at bridging the gap between clinical expertise and computer science knowledge by providing an application for clinical data analysis with no requirement for statistical programming knowledge. Our tool allows clinical researchers to conduct data processing and visualization in an interactive environment, thus providing an assisting tool for clinical studies. The application was experimentally evaluated with an analysis of Type 1 Diabetes clinical data. The results obtained with the tool are in line with the domain literature, demonstrating the value of our application in data exploration and hypothesis testing.


Asunto(s)
Minería de Datos , Programas Informáticos , Computadores , Proyectos de Investigación
4.
JMIR Mhealth Uhealth ; 9(1): e21926, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33507156

RESUMEN

BACKGROUND: Multimodal wearable technologies have brought forward wide possibilities in human activity recognition, and more specifically personalized monitoring of eating habits. The emerging challenge now is the selection of most discriminative information from high-dimensional data collected from multiple sources. The available fusion algorithms with their complex structure are poorly adopted to the computationally constrained environment which requires integrating information directly at the source. As a result, more simple low-level fusion methods are needed. OBJECTIVE: In the absence of a data combining process, the cost of directly applying high-dimensional raw data to a deep classifier would be computationally expensive with regard to the response time, energy consumption, and memory requirement. Taking this into account, we aimed to develop a data fusion technique in a computationally efficient way to achieve a more comprehensive insight of human activity dynamics in a lower dimension. The major objective was considering statistical dependency of multisensory data and exploring intermodality correlation patterns for different activities. METHODS: In this technique, the information in time (regardless of the number of sources) is transformed into a 2D space that facilitates classification of eating episodes from others. This is based on a hypothesis that data captured by various sensors are statistically associated with each other and the covariance matrix of all these signals has a unique distribution correlated with each activity which can be encoded on a contour representation. These representations are then used as input of a deep model to learn specific patterns associated with specific activity. RESULTS: In order to show the generalizability of the proposed fusion algorithm, 2 different scenarios were taken into account. These scenarios were different in terms of temporal segment size, type of activity, wearable device, subjects, and deep learning architecture. The first scenario used a data set in which a single participant performed a limited number of activities while wearing the Empatica E4 wristband. In the second scenario, a data set related to the activities of daily living was used where 10 different participants wore inertial measurement units while performing a more complex set of activities. The precision metric obtained from leave-one-subject-out cross-validation for the second scenario reached 0.803. The impact of missing data on performance degradation was also evaluated. CONCLUSIONS: To conclude, the proposed fusion technique provides the possibility of embedding joint variability information over different modalities in just a single 2D representation which results in obtaining a more global view of different aspects of daily human activities at hand, and yet preserving the desired performance level in activity recognition.


Asunto(s)
Aprendizaje Profundo , Ingestión de Alimentos , Dispositivos Electrónicos Vestibles , Actividades Cotidianas , Algoritmos , Humanos
5.
Sensors (Basel) ; 20(13)2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32630833

RESUMEN

Advances in technology and data analysis provide rich opportunities for developing intelligent environments assisting their inhabitants, so-called smart environments or smart spaces. Enhanced with technology, sensors, user interfaces, and various applications, such smart spaces are capable of recognizing users and situations they are in, react accordingly, e.g., by providing certain services or changes to the environment itself. Therefore, smart space solutions are gradually coming to different application domains, each with corresponding specific characteristics. In this article, we discuss our experiences and explore the challenges of a long-term real-world Internet of Things (IoT) deployment at a University campus. We demonstrate the technical implementation and data quality issues. We conduct several studies, from data analysis to interaction with space, utilizing the developed infrastructure, and we also share our actions to open the data for education purposes and discuss their outcomes. With this article, we aim to share our experience and provide real-world lessons learned when building an open, multipurpose, publicly used smart space at a University campus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA