Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 7117, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37160932

RESUMEN

Nanometer-sized crystals (nanolites) play an important role in controlling eruptions by affecting the viscosity of magmas and inducing bubble nucleation. We present detailed microscopic and nanoscopic petrographic analyses of nanolite-bearing and nanolite-free pumice from the 2021 eruption of Fukutoku-Oka-no-Ba, Japan. The nanolite mineral assemblage includes biotite, which is absent from the phenocryst mineral assemblage, and magnetite and clinopyroxene, which are observed as phenocrysts. The boundary between the nanolite-bearing brown glass and nanolite-free colorless glass is either sharp or gradational, and the sharp boundaries also appear sharp under the transmitted electron microscope. X-ray absorption fine structure (XAFS) analysis of the volcanic glass revealed that the nanolite-free colorless glass records an oxygen fugacity of QFM + 0.98 (log units), whereas the nanolite-bearing brown glass records a higher apparent oxygen fugacity (~ QFM + 2). Thermodynamic modelling using MELTS indicates that higher oxygen fugacities increase the liquidus temperature and thus induced the crystallization of magnetite nanolites. The hydrous nanolite mineral assemblage and glass oxygen fugacity estimates suggest that an oxidizing fluid supplied by a hot mafic magma induced nanolite crystallization in the magma reservoir, before the magma fragmentation. The oxidation-induced nanolite crystallization then enhanced heterogeneous bubble nucleation, resulting in convection in the magma reservoir and triggering the eruption.

2.
Nat Commun ; 12(1): 6015, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34650082

RESUMEN

How serpentinites in the forearc mantle and subducted lithosphere become involved in enriching the subarc mantle source of arc magmas is controversial. Here we report molybdenum isotopes for primitive submarine lavas and serpentinites from active volcanoes and serpentinite mud volcanoes in the Mariana arc. These data, in combination with radiogenic isotopes and elemental ratios, allow development of a model whereby shallow, partially serpentinized and subducted forearc mantle transfers fluid and melt from the subducted slab into the subarc mantle. These entrained forearc mantle fragments are further metasomatized by slab fluids/melts derived from the dehydration of serpentinites in the subducted lithospheric slab. Multistage breakdown of serpentinites in the subduction channel ultimately releases fluids/melts that trigger Mariana volcanic front volcanism. Serpentinites dragged down from the forearc mantle are likely exhausted at >200 km depth, after which slab-derived serpentinites are responsible for generating slab melts.

3.
J Reprod Dev ; 63(6): 605-609, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29033405

RESUMEN

The gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), are important hormones in vertebrate reproduction. The isolation of gonadotropins from the pituitary gland is sub-optimal, as the cross-contamination of one hormone with another is common and often results in the variation in the measured activity of LH and FSH. The production of recombinant hormones is, therefore, a viable approach to solve this problem. This study aimed to express recombinant rat, mouse, and mastomys FSH and LH in Chinese hamster ovary (CHO) cells. Their common α-subunits along with their hormone-specific ß-subunits were encoded in a single mammalian expression vector. FSH from all three species was expressed, whereas expression was achieved only for the mouse LH. Immunohistochemistry for rat alpha subunit of glycoprotein hormone (αGSU) and LHß and FSHß subunits confirmed the production of the dimeric hormone in CHO cells. The recombinant rodent gonadotropins were confirmed to be biologically active; estradiol production was increased by recombinant FSH in granulosa cells, while recombinant LH increased testosterone production in Leydig cells.


Asunto(s)
Hormona Folículo Estimulante/biosíntesis , Vectores Genéticos , Hormona Luteinizante/biosíntesis , Animales , Células CHO , Cricetulus , Hormona Folículo Estimulante/genética , Hormona Luteinizante/genética , Masculino , Ratones Endogámicos C57BL , Murinae , Ratas Wistar , Proteínas Recombinantes/biosíntesis
4.
Sci Rep ; 6: 33517, 2016 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-27669662

RESUMEN

The straightforward but unexpected relationship presented here relates crustal thickness to magma type in the Izu-Ogasawara (Bonin) and Aleutian oceanic arcs. Volcanoes along the southern segment of the Izu-Ogasawara arc and the western Aleutian arc (west of Adak) are underlain by thin crust (10-20 km). In contrast those along the northern segment of the Izu-Ogasawara arc and eastern Aleutian arc are underlain by crust ~35 km thick. Interestingly, andesite magmas dominate eruptive products from the former volcanoes and mostly basaltic lavas erupt from the latter. According to the hypothesis presented here, rising mantle diapirs stall near the base of the oceanic crust at depths controlled by the thickness of the overlying crust. Where the crust is thin, melting occurs at relatively low pressures in the mantle wedge producing andesitic magmas. Where the crust is thick, melting pressures are higher and only basaltic magmas tend to be produced. The implications of this hypothesis are: (1) the rate of continental crust accumulation, which is andesitic in composition, would have been greatest soon after subduction initiated on Earth, when most crust was thin; and (2) most andesite magmas erupted on continental crust could be recycled from "primary" andesite originally produced in oceanic arcs.

5.
Nature ; 441(7092): 494-7, 2006 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-16724063

RESUMEN

Three-quarters of the Earth's volcanic activity is submarine, located mostly along the mid-ocean ridges, with the remainder along intraoceanic arcs and hotspots at depths varying from greater than 4,000 m to near the sea surface. Most observations and sampling of submarine eruptions have been indirect, made from surface vessels or made after the fact. We describe here direct observations and sampling of an eruption at a submarine arc volcano named NW Rota-1, located 60 km northwest of the island of Rota (Commonwealth of the Northern Mariana Islands). We observed a pulsating plume permeated with droplets of molten sulphur disgorging volcanic ash and lapilli from a 15-m diameter pit in March 2004 and again in October 2005 near the summit of the volcano at a water depth of 555 m (depth in 2004). A turbid layer found on the flanks of the volcano (in 2004) at depths from 700 m to more than 1,400 m was probably formed by mass-wasting events related to the eruption. Long-term eruptive activity has produced an unusual chemical environment and a very unstable benthic habitat exploited by only a few mobile decapod species. Such conditions are perhaps distinctive of active arc and hotspot volcanoes.


Asunto(s)
Erupciones Volcánicas/estadística & datos numéricos , Animales , Ecosistema , Geografía , Fenómenos Geológicos , Geología , Océanos y Mares , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...