Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35216405

RESUMEN

In the United States, breast cancer is among the most frequently diagnosed cancers in women. Breast cancer is classified into four major subtypes: human epidermal growth factor receptor 2 (HER2), Luminal-A, Luminal-B, and Basal-like or triple-negative, based on histopathological criteria including the expression of hormone receptors (estrogen receptor and/or progesterone receptor) and/or HER2. Primary breast cancer treatments can include surgery, radiation therapy, systemic chemotherapy, endocrine therapy, and/or targeted therapy. Endocrine therapy has been shown to be effective in hormone receptor-positive breast cancers and is a common choice for adjuvant therapy. However, due to the aggressive nature of triple-negative breast cancer, targeted therapy is becoming a noteworthy area of research in the search for non-endocrine-targets in breast cancer. In addition to HER2-targeted therapy, other emerging therapies include immunotherapy and targeted therapy against critical checkpoints and/or pathways in cell growth. This review summarizes novel targeted breast cancer treatments and explores the possible implications of combination therapy.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Inmunoterapia/métodos , Terapia Molecular Dirigida/métodos , Receptores de Esteroides/metabolismo
2.
Brain Res ; 1746: 147024, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32712126

RESUMEN

The human 15q13.3 microdeletion syndrome (DS) is caused by a heterozygous microdeletion (MD) affecting six genes: FAN1; MTMR10; TRPM1; KLF13; OTUD7A; and CHRNA7. Carriers are at risk for intellectual disability, epilepsy, autism spectrum disorder, and schizophrenia. Here we used the Df[h15q13]/+ mouse model with an orthologous deletion to further characterize molecular, neurophysiological, and behavioral parameters that are relevant to the 15q13.3 DS. First, we verified the expression and distribution of the α7 nicotinic acetylcholine receptor (nAChR), a gene product of the CHRNA7, in cortical and subcortical areas. Results revealed similar mRNA distribution pattern in wildtype (WT) and heterozygous (Het) mice, with about half the number of α7 nAChR binding sites in mutants. Hippocampal recordings showed similar input/output responses of field excitatory post-synaptic potentials and theta-burst induced long-term potentiation in WT and Het mice. Het males exhibited impaired spatial learning acquisition in the Barnes Maze. Indicative of increased seizure susceptibility, Het mice developed secondary seizures after 6-Hz corneal stimulation, and had significantly increased sensitivity to the chemoconvulsant pentylenetetrazol resulting in increased spiking in hippocampal EEG recordings. Basal mRNA expression of brain derived neurotrophic factor and activity regulated immediate early genes (c-fos, Arc, Erg-1 and Npas4) during adolescence, a critical period of brain maturation, was unaffected by genotype. Thus, the MD did not show gross neuroanatomical, molecular, and neurophysiological abnormalities despite deficits in spatial learning and increased susceptibility to seizures. Altogether, our results verify the phenotypic profile of the heterozygous Df[h15q13]/+ mouse model and underscore its translational relevance for human 15q13.3 DS.


Asunto(s)
Deleción Cromosómica , Trastornos de los Cromosomas , Modelos Animales de Enfermedad , Discapacidad Intelectual , Convulsiones , Animales , Cromosomas Humanos Par 15 , Heterocigoto , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...