Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 566
Filtrar
1.
Adv Colloid Interface Sci ; 328: 103174, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38728772

RESUMEN

The most common carrier for encapsulation of bioactive components is still simple emulsion. Recently, bio-based novel emulsion systems such as multiple emulsions (MEs) and Pickering emulsions (PEs) have been introduced as innovative colloidal delivery systems for encapsulation and controlled release of bioactive compounds. Multiple PEs (MPEs), which carries both benefit of MEs and PEs could be fabricated by relatively scalable and simple operations. In comparison with costly synthetic surfactants and inorganic particles which are widely used for stabilization of both MEs and PEs, MPEs stabilized by food-grade particles, while having health-promoting aspects, are able to host the "clean label" and "green label" attributes. Nevertheless, in achieving qualified techno-functional attributes and encapsulation properties, the selection of suitable materials is a crucial step in the construction of such complex systems. Current review takes a cue from both MEs and PEs emulsification techniques to grant a robust background for designing various MPEs. Herein, various fabrication methods of MEs and PEs are described comprehensively in a physical viewpoint in order to find key conception of successful formulation of MPEs. This review also highlights the link between the underlying aspects and exemplified specimens of evidence which grant insights into the rational design of MPEs through food-based ingredients to introduces MPEs as novel colloidal/functional materials. Their utilization for encapsulation of bioactive compounds is discussed as well. In the last part, instability behavior of MPEs under various conditions will be discussed. In sum, this review aims to gain researchers who work with food-based components, basics of innovative design of MPEs.

2.
ACS Infect Dis ; 10(5): 1576-1589, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38581387

RESUMEN

Exploring novel antimicrobial drugs and strategies has become essential to the fight MRSA-associated infections. Herein, we found that membrane-disrupted repurposed antibiotic salifungin had excellent bactericidal activity against MRSA, with limited development of drug resistance. Furthermore, adding salifungin effectively decreased the minimum inhibitory concentrations of clinical antibiotics against Staphylococcus aureus. Evaluations of the mechanism demonstrated that salifungin disrupted the level of H+ and K+ ions using hydrophilic and lipophilic groups to interact with bacterial membranes, causing the disruption of bacterial proton motive force followed by impacting on bacterial the function of the respiratory chain and adenosine 5'-triphosphate, thereby inhibiting phosphatidic acid biosynthesis. Moreover, salifungin also significantly inhibited the formation of bacterial biofilms and eliminated established bacterial biofilms by interfering with bacterial membrane potential and inhibiting biofilm-associated gene expression, which was even better than clinical antibiotics. Finally, salifungin exhibited efficacy comparable to or even better than that of vancomycin in the MRSA-infected animal models. In conclusion, these results indicate that salifungin can be a potential drug for treating MRSA-associated infections.


Asunto(s)
Antibacterianos , Biopelículas , Reposicionamiento de Medicamentos , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Animales , Ratones , Farmacorresistencia Bacteriana/efectos de los fármacos
3.
Artículo en Inglés | MEDLINE | ID: mdl-38616207

RESUMEN

PURPOSE: The significance of postmastectomy radiotherapy (PMRT) in breast cancer patients who initially have clinically node-positive (cN +) status but achieve downstaging to ypN0 following neoadjuvant chemotherapy (NAC) remains uncertain. This study aims to assess the impact of PMRT in this patient subset. METHODS: Patients were enrolled from West China Hospital, Sichuan University from 2008 to 2019. Overall survival (OS), Locoregional recurrence-free survival (LRFS), distant metastasis-free survival (DMFS), and breast cancer-specific survival (BCSS) were estimated using the Kaplan-Meier method and assessed with the log-rank test. The impact of PMRT was further analyzed by the Cox proportional hazards model. Propensity score matching (PSM) was performed to reduce the selection bias. RESULTS: Of the 333 eligible patients, 189 (56.8%) received PMRT, and 144 (43.2%) did not. At a median follow-up period of 71 months, the five-year LRFS, DMFS, BCSS, and OS rates were 99.1%, 93.4%, 96.4%, and 94.3% for the entire cohort, respectively. Additionally, the 5-year LRFS, DMFS, BCSS, and OS rates were 98.9%, 93.8%, 96.7%, and 94.5% with PMRT and 99.2%, 91.3%, 94.9%, and 92.0% without PMRT, respectively (all p-values not statistically significant). After multivariate analysis, PMRT was not a significant risk factor for any of the endpoints. When further stratified by stage, PMRT did not show any survival benefit for patients with stage II-III diseases. CONCLUSION: In the context of comprehensive treatments, PMRT might be exempted in ypN0 breast cancer patients. Further large-scale, randomized controlled studies are required to investigate the significance of PMRT in this patient subset.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38568462

RESUMEN

PURPOSE: This study aimed to identify the genetic causes of male infertility and primary ciliary dyskinesia (PCD)/PCD-like phenotypes in three unrelated Han Chinese families. METHODS: We conducted whole-exome sequencing of three patients with male infertility and PCD/PCD-like phenotypes from three unrelated Chinese families. Ultrastructural and immunostaining analyses of patient spermatozoa and respiratory cilia and in vitro analyses were performed to analyze the effects of SPEF2 variants. Intracytoplasmic sperm injection (ICSI) was administered to three affected patients. RESULTS: We identified four novel SPEF2 variants, including one novel homozygous splicing site variant [NC_000005.10(NM_024867.4): c.4447 + 1G > A] of the SPEF2 gene in family 1, novel compound heterozygous nonsense variants [NC_000005.10(NM_024867.4): c.1339C > T (p.R447*) and NC_000005.10(NM_024867.4): c.1645G > T (p.E549*)] in family 2, and one novel homozygous missense variant [NC_000005.10(NM_024867.4): c.2524G > A (p.D842N)] in family 3. All the patients presented with male infertility and PCD/likely PCD. All variants were present at very low levels in public databases, predicted to be deleterious in silico prediction tools, and were further confirmed deleterious by in vitro analyses. Ultrastructural analyses of the spermatozoa of the patients revealed the absence of the central pair complex in the sperm flagella. Immunostaining of the spermatozoa and respiratory cilia of the patients validated the pathogenicity of the SPEF2 variants. All patients carrying SPEF2 variants underwent one ICSI cycle and delivered healthy infants. CONCLUSION: Our study reported four novel pathogenic variants of SPEF2 in three male patients with infertility and PCD/PCD-like phenotypes, which not only extend the spectrum of SPEF2 mutations but also provide information for genetic counseling and treatment of such conditions.

5.
Food Res Int ; 184: 114228, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609215

RESUMEN

There is a growing interest in employing whole food-based strategies to prevent chronic diseases, owing to the potential synergistic interactions among various bioactive components found within whole foods. The current research aimed to determine inhibitory effects of the whole edible mushroom Pleurotus eryngii (WPE) on high-fat diet (HFD)-induced obesity in mice. Our results showed that dietary intake of WPE significantly inhibited the abnormal gain of body weight and adipose tissue weight, improved glucose tolerance, and ameliorated the serum biochemical parameters in HFD-fed mice. The histological analysis illustrated that the severity of non-alcoholic fatty liver induced by HFD was significantly reduced by WPE. Oral intake of WPE profoundly modulated the mRNA levels of hepatic genes involved in lipid metabolism and also increased the level of short-chain fatty acids in the mouse cecum. Moreover, WPE alleviated the HFD-induced gut microbiota dysbiosis, increasing the abundance of beneficial bacteria (Akkermansia, Lactobacillus, Bifidobacterium, and Sutteralla), and decreasing the harmful ones (rc4-4, Dorea, Coprococcus, Oscillospira, and Ruminococcus). These findings presented new evidence supporting that WPE could be used as a whole food-based strategy to protect against obesity and obesity-driven health problems.


Asunto(s)
Microbioma Gastrointestinal , Pleurotus , Animales , Ratones , Disbiosis , Metabolismo de los Lípidos , Obesidad/prevención & control , Ingestión de Alimentos
6.
Research (Wash D C) ; 7: 0343, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550777

RESUMEN

Fut2-mediated α1,2-fucosylation is important for gut homeostasis, including the intestinal stem cell (ISC). The stemness of ISC declines with age, and aging-associated ISC dysfunction is closely related to many age-related intestinal diseases. We previously found intestinal epithelial dysfunction in some aged Fut2 knockout mice. However, how Fut2-mediated α1,2-fucosylation affects ISC aging is still unknown. On this basis, the herein study aims to investigate the role of Fut2-mediated α1,2-fucosylation in ISC aging. Aging models in ISC-specific Fut2 knockout mice were established. ISCs were isolated for proteomics and N-glycoproteomics analysis. ISC functions and mitochondrial functions were examined in mice and organoids. Ulex europaeus agglutinin I chromatography and site-directed mutagenesis were used to validate the key target fucosylated proteins of Fut2. As a result, Fut2 knockout impaired ISC stemness and promoted aging marker expression in aged mice. Proteomics analysis indicated mitochondrial dysfunction in Fut2 knockout ISC. More injured mitochondria, elevated levels of reactive oxygen species, and decreased levels of adenosine 5'-triphosphate (ATP) in Fut2 knockout ISC were found. Moreover, respiratory chain complex impairment and mitophagy dysfunction in Fut2 knockout ISC were further noted. Finally, Fut2 was demonstrated to regulate mitochondrial functions mainly by regulating the α1,2-fucosylation of N-acyl sphingosine amidohydrolase 2 (Asah2) and Niemann-Pick type C intracellular cholesterol transporter 1 (Npc1). In conclusion, this study demonstrated the substantial role of Fut2 in regulating ISC functions during aging by affecting mitochondrial function. These findings provide novel insights into the molecular mechanisms of ISC aging and therapeutic strategies for age-related intestinal diseases.

7.
Front Microbiol ; 15: 1357579, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38529180

RESUMEN

Potato early blight (PEB), a foliar disease of potato during the growing period, caused by Alternaria sp., is common in major potato-producing areas worldwide. Effective agents to control this disease or completely resistant potato varieties are absent. Large-scale use of fungicides is limited due to possibility of increase in pathogen resistance and the requirements of ecological agriculture. In this study, we focused on the composition and infection characteristics of early blight pathogens in Yunnan Province and screened candidate pathogenesis-related pathways and genes. We isolated 85 strains of Alternaria sp. fungi from typical early blight spots in three potato-growing regions in Yunnan Province from 2018 to 2022, and identified 35 strains of Alternaria solani and 50 strains of Alternaria alternata by morphological characterization and ITS sequence comparison, which were identified as the main and conditional pathogens causing early blight in potato, respectively. Scanning electron microscope analysis confirmed only A. solani producing appressorium at 4 h after inoculation successfully infected the leaf cells. Via genome assembly and annotation, combine transcriptome and proteomic analysis, the following pathogenicity-related unit, transcription factors and metabolic pathway were identified: (1) cell wall-degrading enzymes, such as pectinase, keratinase, and cellulase; (2) genes and pathways related to conidia germination and pathogenicity, such as ubiquitination and peroxisomes; and (3) transcription factors, such as Zn-clus, C2H2, bZIP, and bHLH. These elements were responsible for PEB epidemic in Yunnan.

8.
Food Chem ; 448: 139062, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38531297

RESUMEN

Avenanthramide-C (AVN-C) is the biomarker for oat with a variety of physiological functions, whereas its application is constrained by low stability and bioavailability. Avenanthramide-C is the biomarker for oat with a variety of physiological functions, whereas its application is constrained by low stability and bioavailability. This study evaluated the potential of yeast cell (YC) and yeast cell wall (YCW) capsules as delivery systems for stabilizing AVN-C. It was observed that these yeast capsules possessed the ellipsoidal morphology and intact structure without visual pores. Additionally, the YCW capsules exhibited higher encapsulation and loading capacity due to the large internal space. The interaction of yeast capsules with AVN-C involved the hydrophobic interactions and hydrogen bonding. Moreover, the loading of AVN-C induced high hydrophobicity inside the yeast capsules, which helped to protect AVN-C against degradation and release AVN-C in a slow and sustained manner in the simulated gastrointestinal tract. The YCW capsules have potential as controlled delivery system for AVN-C, which could be further used as a nutraceutical and added to functional foods.


Asunto(s)
Avena , Cápsulas , Pared Celular , Saccharomyces cerevisiae , ortoaminobenzoatos , Avena/química , ortoaminobenzoatos/química , Cápsulas/química , Pared Celular/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Biomarcadores , Interacciones Hidrofóbicas e Hidrofílicas
9.
J Affect Disord ; 353: 90-98, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38452935

RESUMEN

BACKGROUND: Reversion from mild cognitive impairment (MCI) to normal cognition (NC) is not uncommon and indicates a better cognitive trajectory. This study aims to identify predictors of MCI reversion and develop a predicting model. METHOD: A total of 391 MCI subjects (mean age = 74.3 years, female = 61 %) who had baseline data of magnetic resonance imaging, clinical, and neuropsychological measurements were followed for two years. Multivariate logistic analyses were used to identify the predictors of MCI reversion after adjusting for age and sex. A stepwise backward logistic regression model was used to construct a predictive nomogram for MCI reversion. The nomogram was validated by internal bootstrapping and in an independent cohort. RESULT: In the training cohort, the 2-year reversion rate was 19.95 %. Predictors associated with reversion to NC were higher education level (p = 0.004), absence of APOE4 allele (p = 0.001), larger brain volume (p < 0.005), better neuropsychological measurements performance (p < 0.001), higher glomerular filtration rate (p = 0.035), and lower mean arterial pressure (p = 0.060). The nomogram incorporating five predictors (education, hippocampus volume, the Alzheimer's Disease Assessment Scale-Cognitive score, the Rey Auditory Verbal Learning Test-immediate score, and mean arterial pressure) achieved good C-indexes of 0.892 (95 % confidence interval [CI], 0.859-0.926) and 0.806 (95 % CI, 0.709-0.902) for the training and validation cohort. LIMITATION: Observational duration is relatively short; The predicting model warrant further validation in larger samples. CONCLUSION: This prediction model could facilitate risk stratification and early management for the MCI population.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Femenino , Anciano , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Cognición , Imagen por Resonancia Magnética , Hipocampo/patología , Pruebas Neuropsicológicas , Enfermedad de Alzheimer/diagnóstico por imagen , Progresión de la Enfermedad
10.
Microbiol Res ; 283: 127647, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38452551

RESUMEN

The Type VI secretion system (T6SS) functions as a protein transport nanoweapon in several stages of bacterial life. Even though bacterial competition is the primary function of T6SS, different bacteria exhibit significant variations. Particularly in Extraintestinal pathogenic Escherichia coli (ExPEC), research into T6SS remains relatively limited. This study identified the uncharacterized gene evfG within the T6SS cluster of ExPEC RS218. Through our experiments, we showed that evfG is involved in T6SS expression in ExPEC RS218. We also found evfG can modulate T6SS activity by competitively binding to c-di-GMP, leading to a reduction in the inhibitory effect. Furthermore, we found that evfG can recruit sodA to alleviate oxidative stress. The research shown evfG controls an array of traits, both directly and indirectly, through transcriptome and additional tests. These traits include cell adhesion, invasion, motility, drug resistance, and pathogenicity of microorganisms. Overall, we contend that evfG serves as a multi-functional regulator for the T6SS and several crucial activities. This forms the basis for the advancement of T6SS function research, as well as new opportunities for vaccine and medication development.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli Patógena Extraintestinal , Sistemas de Secreción Tipo VI , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo , Escherichia coli Patógena Extraintestinal/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Virulencia , Factores de Virulencia/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-38492154

RESUMEN

PURPOSE: To identify the genetic causes of multiple morphological abnormalities in sperm flagella (MMAF) and male infertility in patients from two unrelated Han Chinese families. METHODS: Whole-exome sequencing was conducted using blood samples from the two individuals with MMAF and male infertility. Hematoxylin and eosin staining and scanning electron microscopy were performed to evaluate sperm morphology. Ultrastructural and immunostaining analyses of the spermatozoa were performed. The HEK293T cells were used to confirm the pathogenicity of the variants. RESULTS: We identified two novel homozygous missense ARMC2 variants: c.314C > T: p.P105L and c.2227A > G: p.N743D. Both variants are absent or rare in the human population genome data and are predicted to be deleterious. In vitro experiments indicated that both ARMC2 variants caused a slightly increased protein expression. ARMC2-mutant spermatozoa showed multiple morphological abnormalities (bent, short, coiled, absent, and irregular) in the flagella. In addition, the spermatozoa of the patients revealed a frequent absence of the central pair complex and disrupted axonemal ultrastructure. CONCLUSION: We identified two novel ARMC2 variants that caused male infertility and MMAF in Han Chinese patients. These findings expand the mutational spectrum of ARMC2 and provide insights into the complex causes and pathogenesis of MMAF.

12.
J Am Chem Soc ; 146(10): 6837-6845, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38426800

RESUMEN

The efficient synthesis of polar-functionalized polypropylenes with high molecular weight and high stereoregularity represents a challenging task. This challenge becomes even more daunting when pursuing an industrially preferred heterogeneous process. This study demonstrated the realization of these goals through the use of commercial heterogeneous Ziegler-Natta catalysts in the copolymerization of propylene with ionic cluster polar monomers. The results revealed high copolymerization activity (∼1.1 × 107 g mol-1 h-1), moderate polar monomer incorporation ratios (∼4.9 mol %), high copolymer molecular weight (Mw > 105 g mol-1), high stereoregularity ([mmmm] ∼ 96%), and high melting temperature range (150-162 °C). The utilization of ionic cluster polar monomers improved the thermal stability as well as stereoselectivity of the catalyst. Moreover, the Ziegler-Natta catalyst can homopolymerize ionic cluster polar monomers with high activities (>104 g mol-1 h-1). The resulting polar-functionalized isotactic polypropylenes (iPP) exhibited superior tensile strength, impact strength, creep resistance, transparency, and crystallinity compared with nonpolar iPP. This enhancement was attributable to the dual roles of the ionic cluster polar monomer unit, serving as both a transparent nucleating agent and a dynamic cross-linking functionality. Furthermore, the polar-functionalized iPP exhibited improved compatibility with polar materials, offering benefits for applications in composites, recycling of mixed plastic wastes, 3D printing, and other fields. This study offered a comprehensive solution for the future industrial production of polar-functionalized iPP via copolymerization, bridging the gap between an efficient and practical copolymerization process from a synthetic chemistry perspective and enhanced material properties from an application perspective.

13.
Vet Microbiol ; 292: 110055, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38513523

RESUMEN

Transmissible gastroenteritis virus (TGEV) is characterized by watery diarrhea, vomiting, and dehydration and is associated with high mortality especially in newborn piglets, causing significant economic losses to the global pig industry. Hypoxia inducible factor-1α (HIF-1α) has been identified as a key regulator of TGEV-induced inflammation, but understanding of the effect of HIF-1α on TGEV infection remains limited. This study found that TGEV infection was associated with a marked increase in HIF-1α expression in ST cells and an intestinal organoid epithelial monolayer. Furthermore, HIF-1α was shown to facilitate TGEV infection by targeting viral replication, which was achieved by restraining type I and type III interferon (IFN) production. In vivo experiments in piglets demonstrated that the HIF-1α inhibitor BAY87-2243 significantly reduced HIF-1α expression and inhibited TGEV replication and pathogenesis by activating IFN production. In summary, we unveiled that HIF-1α facilitates TGEV replication by restraining type I and type III IFN production in vitro, ex vivo, and in vivo. The findings from this study suggest that HIF-1α could be a novel antiviral target and candidate drug against TGEV infection.


Asunto(s)
Gastroenteritis Porcina Transmisible , Enfermedades de los Porcinos , Virus de la Gastroenteritis Transmisible , Animales , Porcinos , Interferón lambda , Intestinos , Replicación Viral , Hipoxia/veterinaria
14.
Int J Antimicrob Agents ; 63(4): 107104, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38325720

RESUMEN

OBJECTIVES: Antimicrobial resistance has raised concerns regarding untreatable infections and poses a growing threat to public health. Rational design of new AMPs is an ideal solution to this threat. METHODS: In this study, we designed, modified, and synthesised an excellent AMP, L-10, based on the original sequence of the Cyprinus carpio chemokine. All experimental data were presented as the mean ± standard deviation (SD), and the two-tailed unpaired T-test method was used to analyze all data. RESULTS: L-10 exhibited excellent antibacterial activity with negligible toxicity and improved the efficacy of a broad class of antibiotics against MDR Gram-negative pathogens, including tetracycline, meropenem, levofloxacin, and rifampin. Mechanistic studies have suggested that L-10 targets the bacterial membrane components, LPS and PG, to disrupt bacterial membrane integrity, thereby exerting antibacterial effects and enhancing the efficacy of antibiotics. Moreover, in animal infection models, L-10 significantly increased the survival rate of infected animals and effectively reduced the tissue bacterial load and inflammatory factor levels. In addition to its direct antibacterial activity, L-10 dramatically reduced pulmonary pathological alterations in a mouse model of endotoxemia and suppressed LPS-induced proinflammatory cytokines in vitro and in vivo. Lastly, L-10 was successfully expressed in Pichia pastoris and maintained antimicrobial activity against MDR Gram-negative pathogens in vivo and in vitro. CONCLUSION: Collectively, these results reveal the potential of L-10 as an ideal candidate against MDR bacterial infections and provide new insights into the design, development, and clinical application of AMPs.


Asunto(s)
Carpas , Infecciones por Escherichia coli , Ratones , Animales , Lipopolisacáridos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Quimiocinas , Infecciones por Escherichia coli/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
15.
BMC Ophthalmol ; 24(1): 88, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38408950

RESUMEN

BACKGROUND: This retrospective study aimed to evaluate the efficacy and safety of gonioscopy-assisted transluminal trabeculotomy (GATT) in Chinese patients with primary congenital glaucoma (PCG) and identify factors influencing surgical success. METHODS: Fourteen patients (24 eyes) diagnosed with PCG who underwent gonioscopy-assisted transluminal trabeculotomy were recruited, and data on intraocular pressure (IOP), antiglaucoma medication, surgery-related complications, and additional treatments were collected during preoperative and postoperative visits. Surgical success was defined as IOP ≤ 21 mmHg and a reduction of > 30% from baseline, with (partial success) or without (complete success) antiglaucoma medication. RESULTS: Mean preoperative IOP was 30.41 ± 6.09 mmHg. At the final visit, mean IOP reduction was 16.1 ± 9.1 mmHg (52%), and 19 of 24 eyes were topical medication-free. IOP was significantly decreased at each postoperative visit compared with baseline (P < 0.05 for all time points). Cumulative proportions of complete and partial success were 79.2% and 95.8%, respectively, at three years postsurgery. Patients without prior antiglaucoma procedures, without postoperative IOP spikes, and those undergoing complete trabeculotomy exhibited improved surgical prognosis. No permanent vision-threatening complications occurred in the 24 eyes by the end of the respective follow-ups. CONCLUSION: Gonioscopy-assisted transluminal trabeculotomy emerged as a safe and effective procedure for PCG treatment, characterized by outstanding IOP reduction efficacy and high surgical success rates.


Asunto(s)
Glaucoma de Ángulo Abierto , Hipotensión Ocular , Trabeculectomía , Humanos , Trabeculectomía/métodos , Estudios Retrospectivos , Resultado del Tratamiento , Estudios de Seguimiento , Glaucoma de Ángulo Abierto/cirugía , Gonioscopía , Agentes Antiglaucoma , Presión Intraocular
16.
Cell Commun Signal ; 22(1): 123, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360663

RESUMEN

BACKGROUND: Meningitic Escherichia coli (E. coli) is the major etiological agent of bacterial meningitis, a life-threatening infectious disease with severe neurological sequelae and high mortality. The major cause of central nervous system (CNS) damage and sequelae is the bacterial-induced inflammatory storm, where the immune response of the blood-brain barrier (BBB) is crucial. METHODS: Western blot, real-time PCR, enzyme-linked immunosorbent assay, immunofluorescence, and dual-luciferase reporter assay were used to investigate the suppressor role of transforming growth factor beta 1 (TGFß1) in the immune response of brain microvascular endothelial cells elicited by meningitic E. coli. RESULT: In this work, we showed that exogenous TGFß1 and induced noncanonical Hedgehog (HH) signaling suppressed the endothelial immune response to meningitic E. coli infection via upregulation of intracellular miR-155. Consequently, the increased miR-155 suppressed ERK1/2 activation by negatively regulating KRAS, thereby decreasing IL-6, MIP-2, and E-selectin expression. In addition, the exogenous HH signaling agonist SAG demonstrated promising protection against meningitic E. coli-induced neuroinflammation. CONCLUSION: Our work revealed the effect of TGFß1 antagonism on E. coli-induced BBB immune response and suggested that activation of HH signaling may be a potential protective strategy for future bacterial meningitis therapy. Video Abstract.


Asunto(s)
Meningitis Bacterianas , Meningitis por Escherichia coli , MicroARNs , Humanos , Escherichia coli/genética , Proteínas Hedgehog/metabolismo , Células Endoteliales/metabolismo , Meningitis por Escherichia coli/metabolismo , Encéfalo/metabolismo , Barrera Hematoencefálica/microbiología , Meningitis Bacterianas/metabolismo , Inmunidad , MicroARNs/metabolismo
17.
Microbiol Spectr ; 12(3): e0140123, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38305163

RESUMEN

The African swine fever virus (ASFV) structural protein pA104R is the only histone-like protein encoded by eukaryotic viruses. pA104R is an essential DNA-binding protein required for DNA replication and genome packaging of ASFV, which are vital for pathogen survival and proliferation. pA104R is an important target molecule for diagnosing, treating, and immune prevention of ASFV. This study characterized monoclonal antibodies (mAbs) against pA104R and found them to recognize natural pA104R in ASFV strains with different genotypes, showing high conservation. Confirmation analyses of pA104R epitopes using mAbs indicated the presence of immunodominant B-cell epitopes, and further characterization showed the high antigenic index and surface accessibility coefficients of the identified epitope. Furthermore, the pA104R protein functions through the polar interactions between the binding amino acid sites; however, these interactions may be blocked by the recognition of generated mAbs. Characterizing the immunodominant B-cell epitope of the ASFV critical proteins, such as pA104R, may contribute to developing sensitive diagnostic tools and vaccine candidate targets.IMPORTANCEAfrican swine fever (ASF) is a highly pathogenic, lethal, and contagious viral disease affecting domestic pigs and wild boars. As no effective vaccine or other treatments have been developed, the control of African swine fever virus (ASFV) relies heavily on virus detection and diagnosis. A potential serological target is the structural protein pA104R. However, the molecular basis of pA104R antigenicity remains unclear, and a specific monoclonal antibody (mAb) against this protein is still unavailable. In this study, mAbs against pA104R were characterized and found to recognize natural pA104R in ASFV strains with different genotypes. In addition, confirmation analyses of pA104R epitopes using mAbs indicated the presence of immunodominant B-cell epitopes, and further characterization showed the high antigenic index and surface accessibility coefficients of the identified epitope. Characteristics of the immunodominant B-cell epitope of ASFV proteins, such as pA104R, may contribute to developing sensitive diagnostic tools and identifying vaccine candidate targets.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Vacunas , Ratones , Porcinos , Animales , Virus de la Fiebre Porcina Africana/genética , Epítopos de Linfocito B , Fiebre Porcina Africana/diagnóstico , Fiebre Porcina Africana/prevención & control , Anticuerpos Monoclonales , Sus scrofa
18.
Clin Genet ; 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38342987

RESUMEN

Oligoasthenoteratozoospermia (OAT) is a common type of male infertility; however, its genetic causes remain largely unknown. Some of the genetic determinants of OAT are gene defects affecting spermatogenesis. BCORL1 (BCL6 corepressor like 1) is a transcriptional corepressor that exhibits the OAT phenotype in a knockout mouse model. A hemizygous missense variant of BCORL1 (c.2615T > G:p.Val872Gly) was reported in an infertile male patient with non-obstructive azoospermia (NOA). Nevertheless, the correlation between BCORL1 variants and OAT in humans remains unknown. In this study, we used whole-exome sequencing to identify a novel hemizygous nonsense variant of BCORL1 (c.1564G > T:p.Glu522*) in a male patient with OAT from a Han Chinese family. Functional analysis showed that the variant produced a truncated protein with altered cellular localization and a dysfunctional interaction with SKP1 (S-phase kinase-associated protein 1). Further population screening identified four BCORL1 missense variants in subjects with both OAT (1 of 325, 0.31%) and NOA (4 of 355, 1.13%), but no pathogenic BCORL1 variants among 362 fertile subjects. In conclusion, our findings indicate that BCORL1 is a potential candidate gene in the pathogenesis of OAT and NOA, expanded its disease spectrum and suggested that BCORL1 may play a role in spermatogenesis by interacting with SKP1.

19.
ACS Infect Dis ; 10(3): 988-999, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38317607

RESUMEN

Escherichia coli continues to be the predominant Gram-negative pathogen causing neonatal meningitis worldwide. Inflammatory mediators have been implicated in the pathogenesis of meningitis and are key therapeutic targets. The role of interleukin-22 (IL-22) in various diseases is diverse, with both protective and pathogenic effects. However, little is understood about the mechanisms underlying the damaging effects of IL-22 on the blood-brain barrier (BBB) in E. coli meningitis. We observed that meningitic E. coli infection induced IL-22 expression in the serum and brain of mice. The tight junction proteins (TJPs) components ZO-1, Occludin, and Claudin-5 were degraded in the mouse brain and human brain microvascular endothelial cells (hBMEC) following IL-22 administration. Moreover, the meningitic E. coli-caused increase in BBB permeability in wild-type mice was restored by knocking out IL-22. Mechanistically, IL-22 activated the STAT3-VEGFA signaling cascade in E. coli meningitis, thus eliciting the degradation of TJPs to induce BBB disruption. Our data indicated that IL-22 is an essential host accomplice during E. coli-caused BBB disruption and could be targeted for the therapy of bacterial meningitis.


Asunto(s)
Infecciones por Escherichia coli , Meningitis Bacterianas , Meningitis por Escherichia coli , Humanos , Ratones , Animales , Barrera Hematoencefálica , Meningitis por Escherichia coli/metabolismo , Meningitis por Escherichia coli/microbiología , Meningitis por Escherichia coli/patología , Escherichia coli/metabolismo , Células Endoteliales , Interleucina-22 , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/farmacología
20.
Hum Reprod Open ; 2024(1): hoae003, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38312775

RESUMEN

STUDY QUESTION: Are there other pathogenic genes for asthenoteratozoospermia (AT)? SUMMARY ANSWER: DNAH3 is a novel candidate gene for AT in humans and mice. WHAT IS KNOWN ALREADY: AT is a major cause of male infertility. Several genes underlying AT have been reported; however, the genetic aetiology remains unknown in a majority of affected men. STUDY DESIGN SIZE DURATION: A total of 432 patients with AT were recruited in this study. DNAH3 mutations were identified by whole-exome sequencing (WES). Dnah3 knockout mice were generated using the genome editing tool. The morphology and motility of sperm from Dnah3 knockout mice were investigated. The entire study was conducted over 3 years. PARTICIPANTS/MATERIALS SETTING METHODS: WES was performed on 432 infertile patients with AT. In addition, two lines of Dnah3 knockout mice were generated. Haematoxylin and eosin (H&E) staining, transmission electron microscopy (TEM), immunostaining, and computer-aided sperm analysis (CASA) were performed to investigate the morphology and motility of the spermatozoa. ICSI was used to overcome the infertility of one patient and of the Dnah3 knockout mice. MAIN RESULTS AND THE ROLE OF CHANCE: DNAH3 biallelic variants were identified in three patients from three unrelated families. H&E staining revealed various morphological abnormalities in the flagella of sperm from the patients, and TEM and immunostaining further showed the loss of the central pair of microtubules, a dislocated mitochondrial sheath and fibrous sheath, as well as a partial absence of the inner dynein arms. In addition, the two Dnah3 knockout mouse lines demonstrated AT. One patient and the Dnah3 knockout mice showed good treatment outcomes after ICSI. LARGE SCALE DATA: N/A. LIMITATIONS REASONS FOR CAUTION: This is a preliminary report suggesting that defects in DNAH3 can lead to asthenoteratozoospermia in humans and mice. The pathogenic mechanism needs to be further examined in a future study. WIDER IMPLICATIONS OF THE FINDINGS: Our findings show that DNAH3 is a novel candidate gene for AT in humans and mice and provide crucial insights into the biological underpinnings of this disorder. The findings may also be beneficial for counselling affected individuals. STUDY FUNDING/COMPETING INTERESTS: This work was supported by grants from National Natural Science Foundation of China (82201773, 82101961, 82171608, 32322017, 82071697, and 81971447), National Key Research and Development Program of China (2022YFC2702604), Scientific Research Foundation of the Health Committee of Hunan Province (B202301039323, B202301039518), Hunan Provincial Natural Science Foundation (2023JJ30716), the Medical Innovation Project of Fujian Province (2020-CXB-051), the Science and Technology Project of Fujian Province (2023D017), China Postdoctoral Science Foundation (2022M711119), and Guilin technology project for people's benefit (20180106-4-7). The authors declare no competing interests.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...