Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 10126, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698088

RESUMEN

In a battery pack, several lithium-ion batteries (LiBs) are connected in series and parallel so that sufficient voltage, current and power can be provided for applications. To ensure safe operation, when one of the LiB cells in a pack has its SoH below 80%, the entire pack will have to be discarded. Thus, ensuring all the LiB cells degrade similarly in a pack is crucial to maximize the potential of all the cells in a pack. There are several methods to perform screening on the LiB cells for such purpose, but there exist many practical challenges for estimating and predicting the degradation rate of the cells before they are chosen to be put in a pack which will be described in this work. This work provides solutions to some of these challenges and shows through experiments that one can screen the weak cells from production batch with just the first discharge cycle, and one can also predict the statistical distribution of the degradation rates of LiB cells in a production batch. On-line in-situ determination of the SoH of each cell connected in a pack is also made possible with a solution presented in this work, and this method is verified over many different types of LiB from various manufacturers.

2.
Artículo en Inglés | MEDLINE | ID: mdl-35156793

RESUMEN

Utilizing renewable electricity energy to convert CO2 into fuels and chemicals, namely, CO2 electrocatalytic reduction reaction (CO2RR), is becoming increasingly significant yet challenged by low activity and selectivity. Recently, a growing number of studies have demonstrated that oxidized species can surprisingly survive on the catalyst surface under highly cathodic CO2RR conditions and play crucial roles in affecting the product selectivity. However, dynamic evolutions of the surface chemical state together with its real correlation to the product selectivity are still unclear, which is one of the most controversial topics for CO2RR. Herein, we particularly resurvey recent CO2RR researches that are all based on advanced in situ/operando methodologies, aiming to clearly reveal the realistic variations in surface chemical state under the working conditions. Then, recent progress in the regulation of the surface chemical state toward specific CO2RR products in current state-of-the-art catalysts with varying metal centers is systematically summarized, which shows an impressive relation between the dynamic chemical state and product profile. Next, we further highlight the developed strategies to regulate the surface chemical state in catalysts and discuss the debates over the effects of chemical state on product profile during CO2RR. Finally, on the basis of previous achievements, we present major challenges and some perspectives for the exploration of the imperative chemical state sensitivity to product profile during CO2RR.

3.
Sci Rep ; 11(1): 24153, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34921168

RESUMEN

Quantum Dots (QDs) are being investigated in a hybrid white light LED structure which inculcates phosphor in the package with a blue LED chip as the light source recently. In this work, Zn doped CdS QD with ZnS shell together with green light emission phosphor is used. Upon prolonged operation, degradation of the LEDs due to the degradation of QDs is observed, which can limit its practical applications. The degradation includes intensity reduction as well as blue shift of the emitted wavelength from the white light. Three stages of degradation are observed, namely an enhancement state where light intensity is found to increase, followed by a rapid degradation stage where light intensity decreases rapidly, and finally a slower degradation stage where the degradation rate of light intensity slows down and continues till the end of the test. Through various detail material analysis, with confirmation from the density functional theory (DFT) calculations, we find that the degradation of the LEDs is due to the time evolving degradation of CdS core structure, beginning from the oxidation of sulfur vacancy of CdS QDs by the nearby oxygen atoms as a result of imperfection of the ZnS protective coating around the QDs in the presence of blue light. This oxidation renders a transformation of CdS into CdO at the initial stage. The final stage is the formation of CdSO4 via some intermediate processes.

4.
Nanotechnology ; 32(35)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34038895

RESUMEN

High energy and high flux protons are used in proton therapy and the impact of proton radiation is a major reliability concern for electronics and solar cells in low earth orbit as well as in the trapped belts. Carbon nanotubes (CNTs), due to their unique characteristics, have been considered for the construction of proton and other radiation sensors. Here, a single wall CNT based proton sensor was fabricated on FR4 substrate and its response to 150 MeV proton irradiation was studied. The change in the resistance of the nanotubes upon irradiation is exploited as the sensing mechanism and the sensor shows good sensitivity to proton radiation. Proton radiation induces dissociation of ambient oxygen, followed by the adsorption of oxygen species on the nanotube surface, which influences its electrical characteristics. Since the nanotube film is thin and the 150 MeV protons are expected to penetrate into and interact with the substrate, control experiments were conducted to study the impact on FR4 substrate without the nanotubes. The dielectric loss tangent or dissipation factor of FR4 increases after irradiation due to an increase in the cross-linking of the resin arising from the degradation of the polymer network.

5.
Materials (Basel) ; 11(3)2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29494534

RESUMEN

The light emitting diode (LED) is widely used in modern solid-state lighting applications, and its output efficiency is closely related to the submounts' material properties. Most submounts used today, such as low-power printed circuit boards (PCBs) or high-power metal core printed circuit boards (MCPCBs), are not transparent and seriously decrease the output light extraction. To meet the requirements of high light output and better color mixing, a three-dimensional (3-D) stacked flip-chip (FC) LED module is proposed and demonstrated. To realize light penetration and mixing, the mentioned 3-D vertically stacking RGB LEDs use transparent glass as FC package submounts called glass circuit boards (GCB). Light emitted from each GCB stacked LEDs passes through each other and thus exhibits good output efficiency and homogeneous light-mixing characteristics. In this work, the parasitic problem of heat accumulation, which caused by the poor thermal conductivity of GCB and leads to a serious decrease in output efficiency, is solved by a proposed transparent cooling oil encapsulation (OCP) method.

6.
Sci Rep ; 8(1): 2452, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29403018

RESUMEN

Increasing phosphor layer thickness and concentration can enhance the lumen flux of white LED (W-LED). In this work, we found that increasing the phosphor layer thickness and concentration can increase its temperature, and there is also a maximum thickness and concentration beyond which their increase will not lead to lumen increase, but only temperature increase. Higher thickness and higher concentration also results in warm light instead of White light. The maximum thickness and concentration are found to be limited by the scattering of light rays with higher % decrease of blue light rays than the yellow light rays. The results obtained in this work can also be used to compute the temperature and thermo-mechanical stress distribution of an encapsulated LED, demonstrating its usefulness to the design of encapsulated LED packages. Simulation software like ANSYS and TracePro are used extensively to verify the root cause mechanisms.

7.
Sci Rep ; 7: 44112, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28276475

RESUMEN

Growth mechanism for synthesizing PVD based Graphene using Amorphous Carbon, catalyzed by Copper is investigated in this work. Different experiments with respect to Amorphous Carbon film thickness, annealing time and temperature are performed for the investigation. Copper film stress and its effect on hydrogen diffusion through the film grain boundaries are found to be the key factors for the growth mechanism, and supported by our Finite Element Modeling. Low temperature growth of Graphene is achieved and the proposed growth mechanism is found to remain valid at low temperatures.

8.
Sci Rep ; 6: 24052, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27052103

RESUMEN

A moisture- electrical - temperature (MET) test is proposed to evaluate the outdoor reliability of high power blue LEDs, with and without phosphor, and to understand the degradation physics of LEDs under the environment of combined humidity, temperature and electrical stresses. The blue LEDs with phosphor will be the high power white LEDs. Scanning acoustic microscopy is used to examine the resulted delamination during this test for the LEDs. The degradation mechanisms of blue LEDs (LEDs without phosphor) and white LEDs (LEDs with phosphor) are found to be different, under both the power on (i.e. with 350 mA through each LED) and power off (i.e. without current supply) conditions. Difference in the coefficient of thermal expansion between the molding part and the lens material as well as the heat generated by the phosphor layer are found to account for the major differences in the degradation mechanisms observed. The findings indicate that the proposed MET test is necessary for the LED industry in evaluating the reliability of LEDs under practical outdoor usage environment.

9.
Sci Rep ; 5: 12967, 2015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-26245922

RESUMEN

Temperature is known to have a significant impact on the performance, safety, and cycle lifetime of lithium-ion batteries (LiB). However, the comprehensive effects of temperature on the cyclic aging rate of LiB have yet to be found. We use an electrochemistry-based model (ECBE) here to measure the effects on the aging behavior of cycled LiB operating within the temperature range of 25 °C to 55 °C. The increasing degradation rate of the maximum charge storage of LiB during cycling at elevated temperature is found to relate mainly to the degradations at the electrodes, and that the degradation of LCO cathode is larger than graphite anode at elevated temperature. In particular, the formation and modification of the surface films on the electrodes as well as structural/phase changes of the LCO electrode, as reported in the literatures, are found to be the main contributors to the increasing degradation rate of the maximum charge storage of LiB with temperature for the specific operating temperature range. Larger increases in the Warburg elements and cell impedance are also found with cycling at higher temperature, but they do not seriously affect the state of health (SoH) of LiB as shown in this work.

10.
Nano Converg ; 1(1): 11, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-28191394

RESUMEN

The failure and degradation mechanisms of gate-all-around silicon nanowire FET subjected to electrostatic discharge (ESD) are investigated through device modeling. Transmission line pulse stress test is simulated and device degradation physics is modeled. The device degradation level, interface state concentration and hard breakdown are shown and analyzed. From the model, we found that ESD stress can induce severe performance degradation or even hard breakdown of gate-all-around nanowire device, and the interface traps due to hot carrier injection is responsible for the device degradation.

11.
Nanoscale Res Lett ; 7: 183, 2012 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-22405035

RESUMEN

Thermal management of integrated circuit chip is an increasing important challenge faced today. Heat dissipation of the chip is generally achieved through the die attach material and solders. With the temperature gradients in these materials, high thermo-mechanical stress will be developed in them, and thus they must also be mechanically strong so as to provide a good mechanical support to the chip. The use of multi-walled carbon nanotube to enhance the thermal conductivity, and the mechanical strength of die attach epoxy and Pb-free solder is demonstrated in this work.

12.
Nanotechnology ; 22(29): 295712, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21693800

RESUMEN

Novel nanostructures such as vertically aligned carbon nanotube (CNT) arrays have received increasing interest as drug delivery carriers. In the present study, two CNT arrays with extreme surface wettabilities are fabricated and their effects on the release of recombinant human bone morphogenetic protein-2 (rhBMP-2) are investigated. It is found that the superhydrophilic arrays retained a larger amount of rhBMP-2 than the superhydrophobic ones. Further use of a poloxamer diffusion layer delayed the initial burst and resulted in a greater total amount of rhBMP-2 released from both surfaces. In addition, rhBMP-2 bound to the superhydrophilic CNT arrays remained bioactive while they denatured on the superhydrophobic surfaces. These results are related to the combined effects of rhBMP-2 molecules interacting with poloxamer and the surface, which could be essential in the development of advanced carriers with tailored surface functionalities.


Asunto(s)
Proteína Morfogenética Ósea 2/farmacología , Interacciones Hidrofóbicas e Hidrofílicas/efectos de los fármacos , Nanotubos de Carbono/química , Factor de Crecimiento Transformador beta/farmacología , Fosfatasa Alcalina/metabolismo , Animales , Línea Celular , Humanos , Ratones , Nanotubos de Carbono/ultraestructura , Proteínas Recombinantes/farmacología , Silicio/química , Humectabilidad/efectos de los fármacos
13.
Nanoscale ; 2(12): 2744-50, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20877897

RESUMEN

Single-walled carbon nanotubes (SWCNTs) exhibit strong antibacterial activities. Direct contact between bacterial cells and SWCNTs may likely induce cell damages. Therefore, the understanding of SWCNT-bacteria interactions is essential in order to develop novel SWCNT-based materials for their potential environmental, imaging, therapeutic, and military applications. In this preliminary study, we utilized atomic force microscopy (AFM) to monitor dynamic changes in cell morphology and mechanical properties of two typical bacterial models (gram-negative Escherichia coli and gram-positive Bacillus subtilis) upon incubation with SWCNTs. The results demonstrated that individually dispersed SWCNTs in solution develop nanotube networks on the cell surface, and then destroy the bacterial envelopes with leakage of the intracellular contents. The cell morphology changes observed on air dried samples are accompanied by an increase in cell surface roughness and a decrease in surface spring constant. To mimic the collision between SWCNTs and cells, a sharp AFM tip of 2 nm was chosen to introduce piercings on the cell surface. No clear physical damages were observed if the applied force was below 10 nN. Further analysis also indicates that a single collision between one nanotube and a bacterial cell is unlikely to introduce direct physical damage. Hence, the antibacterial activity of SWCNTs is the accumulation effect of large amount of nanotubes through interactions between SWCNT networks and bacterial cells.


Asunto(s)
Antibacterianos/farmacología , Bacillus subtilis/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Nanotubos de Carbono/química , Antibacterianos/química , Microscopía de Fuerza Atómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...