Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genome Biol ; 25(1): 99, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637899

RESUMEN

Spatial molecular data has transformed the study of disease microenvironments, though, larger datasets pose an analytics challenge prompting the direct adoption of single-cell RNA-sequencing tools including normalization methods. Here, we demonstrate that library size is associated with tissue structure and that normalizing these effects out using commonly applied scRNA-seq normalization methods will negatively affect spatial domain identification. Spatial data should not be specifically corrected for library size prior to analysis, and algorithms designed for scRNA-seq data should be adopted with caution.


Asunto(s)
Perfilación de la Expresión Génica , Análisis de la Célula Individual , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Perfilación de la Expresión Génica/métodos , Algoritmos , Biología
2.
Curr Opin Biotechnol ; 87: 103111, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38520821

RESUMEN

In-depth profiling of cancer cells/tissues is expanding our understanding of the genomic, epigenomic, transcriptomic, and proteomic landscape of cancer. However, the complexity of the cancer microenvironment, particularly its immune regulation, has made it difficult to exploit the potential of cancer immunotherapy. High-throughput spatial omics technologies and analysis pipelines have emerged as powerful tools for tackling this challenge. As a result, a potential revolution in cancer diagnosis, prognosis, and treatment is on the horizon. In this review, we discuss the technological advances in spatial profiling of cancer around and beyond the central dogma to harness the full benefits of immunotherapy. We also discuss the promise and challenges of spatial data analysis and interpretation and provide an outlook for the future.

4.
BMC Bioinformatics ; 25(1): 64, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331751

RESUMEN

Functional analysis of high throughput experiments using pathway analysis is now ubiquitous. Though powerful, these methods often produce thousands of redundant results owing to knowledgebase redundancies upstream. This scale of results hinders extensive exploration by biologists and can lead to investigator biases due to previous knowledge and expectations. To address this issue, we present vissE, a flexible network-based analysis and visualisation tool that organises information into semantic categories and provides various visualisation modules to characterise them with respect to the underlying data, thus providing a comprehensive view of the biological system. We demonstrate vissE's versatility by applying it to three different technologies: bulk, single-cell and spatial transcriptomics. Applying vissE to a factor analysis of a breast cancer spatial transcriptomic data, we identified stromal phenotypes that support tumour dissemination. Its adaptability allows vissE to enhance all existing gene-set enrichment and pathway analysis workflows, empowering biologists during molecular discovery.


Asunto(s)
Neoplasias de la Mama , Perfilación de la Expresión Génica , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Transcriptoma , Fenotipo
5.
Nucleic Acids Res ; 52(1): e2, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37953397

RESUMEN

To gain a better understanding of the complexity of gene expression in normal and diseased tissues it is important to account for the spatial context and identity of cells in situ. State-of-the-art spatial profiling technologies, such as the Nanostring GeoMx Digital Spatial Profiler (DSP), now allow quantitative spatially resolved measurement of the transcriptome in tissues. However, the bioinformatics pipelines currently used to analyse GeoMx data often fail to successfully account for the technical variability within the data and the complexity of experimental designs, thus limiting the accuracy and reliability of the subsequent analysis. Carefully designed quality control workflows, that include in-depth experiment-specific investigations into technical variation and appropriate adjustment for such variation can address this issue. Here, we present standR, an R/Bioconductor package that enables an end-to-end analysis of GeoMx DSP data. With four case studies from previously published experiments, we demonstrate how the standR workflow can enhance the statistical power of GeoMx DSP data analysis and how the application of standR enables scientists to develop in-depth insights into the biology of interest.


Asunto(s)
Perfilación de la Expresión Génica , Programas Informáticos , Transcriptoma , Biología Computacional , Reproducibilidad de los Resultados , Flujo de Trabajo , Espacio Intracelular/genética
6.
Front Immunol ; 14: 1213560, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37818364

RESUMEN

Poor graft function (PGF), manifested by multilineage cytopenias and complete donor chimerism post-allogeneic stem cell transplantation (alloSCT), and acquired aplastic anaemia (AA) are immune-mediated acquired bone marrow (BM) failure syndromes with a similar clinical presentation. In this study, we used spatial proteomics to compare the immunobiology of the BM microenvironment and identify common mechanisms of immune dysregulation under these conditions. Archival BM trephines from patients exhibited downregulation of the immunoregulatory protein VISTA and the M2 macrophage marker and suppressor of T-cell activation ARG1 with increased expression of the immune checkpoint B7-H3 compared to normal controls. Increased CD163 and CD14 expression suggested monocyte/macrophage skewing, which, combined with dysregulation of STING and VISTA, is indicative of an environment of reduced immunoregulation resulting in the profound suppression of hematopoiesis in these two conditions. There were no changes in the immune microenvironment between paired diagnostic AA and secondary MDS/AML samples suggesting that leukaemic clones develop in the impaired immune microenvironment of AA without the need for further alterations. Of the eight proteins with dysregulated expression shared by diagnostic AA and PGF, the diagnostic AA samples had a greater fold change in expression than PGF, suggesting that these diseases represent a spectrum of immune dysregulation. Unexpectedly, analysis of samples from patients with good graft function post-alloSCT demonstrated significant changes in the immune microenvironment compared to normal controls, with downregulation of CD44, STING, VISTA, and ARG1, suggesting that recovery of multilineage haematopoiesis post-alloSCT does not reflect recovery of immune function and may prime patients for the development of PGF upon further inflammatory insult. The demonstrable similarities in the immunopathology of AA and PGF will allow the design of clinical interventions that include both patient cohorts to accelerate therapeutic discovery and translation.


Asunto(s)
Anemia Aplásica , Trasplante de Células Madre Hematopoyéticas , Pancitopenia , Humanos , Proteómica , Médula Ósea , Trastornos de Fallo de la Médula Ósea , Anemia Aplásica/metabolismo
7.
Cell Chem Biol ; 30(10): 1191-1210.e20, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37557181

RESUMEN

KAT6A, and its paralog KAT6B, are histone lysine acetyltransferases (HAT) that acetylate histone H3K23 and exert an oncogenic role in several tumor types including breast cancer where KAT6A is frequently amplified/overexpressed. However, pharmacologic targeting of KAT6A to achieve therapeutic benefit has been a challenge. Here we describe identification of a highly potent, selective, and orally bioavailable KAT6A/KAT6B inhibitor CTx-648 (PF-9363), derived from a benzisoxazole series, which demonstrates anti-tumor activity in correlation with H3K23Ac inhibition in KAT6A over-expressing breast cancer. Transcriptional and epigenetic profiling studies show reduced RNA Pol II binding and downregulation of genes involved in estrogen signaling, cell cycle, Myc and stem cell pathways associated with CTx-648 anti-tumor activity in ER-positive (ER+) breast cancer. CTx-648 treatment leads to potent tumor growth inhibition in ER+ breast cancer in vivo models, including models refractory to endocrine therapy, highlighting the potential for targeting KAT6A in ER+ breast cancer.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Histonas/metabolismo , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Transducción de Señal , Línea Celular Tumoral
8.
Front Immunol ; 14: 1135489, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153589

RESUMEN

Mucosal head and neck squamous cell carcinoma (HNSCC) are the seventh most common cancer, with approximately 50% of patients living beyond 5 years. Immune checkpoint inhibitors (ICIs) have shown promising results in patients with recurrent or metastatic (R/M) disease, however, only a subset of patients benefit from immunotherapy. Studies have implicated the tumor microenvironment (TME) of HNSCC as a major factor in therapy response, highlighting the need to better understand the TME, particularly by spatially resolved means to determine cellular and molecular components. Here, we employed targeted spatial profiling of proteins on a cohort of pre-treatment tissues from patients with R/M disease to identify novel biomarkers of response within the tumor and stromal margins. By grouping patient outcome categories into response or non-response, based on Response Evaluation Criteria in Solid Tumors (RECIST) we show that immune checkpoint molecules, including PD-L1, B7-H3, and VISTA, were differentially expressed. Patient responders possessed significantly higher tumor expression of PD-L1 and B7-H3, but lower expression of VISTA. Analysis of response subgroups indicated that tumor necrosis factor receptor (TNFR) superfamily members including OX40L, CD27, 4-1BB, CD40, and CD95/Fas, were associated with immunotherapy outcome. CD40 expression was higher in patient-responders than non responders, while CD95/Fas expression was lower in patients with partial response (PR) relative to those with stable disease (SD) and progressive disease (PD). Furthermore, we found that high 4-1BB expression in the tumor compartment, but not in the stroma, was associated with better overall survival (OS) (HR= 0.28, p-adjusted= 0.040). Moreover, high CD40 expression in tumor regions (HR= 0.27, p-adjusted= 0.035), and high CD27 expression in the stroma (HR= 0.2, p-adjusted=0.032) were associated with better survival outcomes. Taken together, this study supports the role of immune checkpoint molecules and implicates the TNFR superfamily as key players in immunotherapy response in our cohort of HNSCC. Validation of these findings in a prospective study is required to determine the robustness of these tissue signatures.


Asunto(s)
Neoplasias de Cabeza y Cuello , Proteínas de Punto de Control Inmunitario , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Carcinoma de Células Escamosas de Cabeza y Cuello/etiología , Proteínas de Punto de Control Inmunitario/genética , Neoplasias de Cabeza y Cuello/terapia , Neoplasias de Cabeza y Cuello/etiología , Antígeno B7-H1/metabolismo , Microambiente Tumoral , Biomarcadores de Tumor/metabolismo , Inmunoterapia/métodos , Receptores del Factor de Necrosis Tumoral
9.
Nucleic Acids Res ; 51(W1): W593-W600, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37158226

RESUMEN

Gene-set analysis (GSA) dominates the functional interpretation of omics data and downstream hypothesis generation. Despite its ability to summarise thousands of measurements into semantically interpretable components, GSA often results in hundreds of significantly enriched gene-sets. However, summarisation and effective visualisation of GSA results to facilitate hypothesis generation is still lacking. While some webservers provide gene-set visualization tools, there is still a need for tools that can effectively summarize and guide exploration of GSA results. To enable versatility, webservers accept gene lists as input, however, none provide end-to-end solutions for emerging data types such as single-cell and spatial omics. Here, we present vissE.Cloud, a webserver for end-to-end gene-set analysis, offering gene-set summarisation and highly interactive visualisation. vissE.Cloud uses algorithms from our earlier R package vissE to summarise GSA results by identifying biological themes. We maintain versatility by allowing analysis of gene lists, as well as, analysis of raw single-cell and spatial omics data, including CosMx and Xenium data, making vissE.Cloud the first webserver to provide end-to-end gene-set analysis of sub-cellular localised spatial data. Structuring the results hierarchically allows swift interactive investigations of results at the gene, gene-set, and clusters level. vissE.Cloud is freely available at https://www.vissE.Cloud.


Asunto(s)
Biología Computacional , Visualización de Datos , Programas Informáticos , Algoritmos , Fenotipo , Internet , Biología Computacional/instrumentación , Biología Computacional/métodos
10.
Immunology ; 168(3): 403-419, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36107637

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is known to present with pulmonary and extra-pulmonary organ complications. In comparison with the 2009 pandemic (pH1N1), SARS-CoV-2 infection is likely to lead to more severe disease, with multi-organ effects, including cardiovascular disease. SARS-CoV-2 has been associated with acute and long-term cardiovascular disease, but the molecular changes that govern this remain unknown. In this study, we investigated the host transcriptome landscape of cardiac tissues collected at rapid autopsy from seven SARS-CoV-2, two pH1N1, and six control patients using targeted spatial transcriptomics approaches. Although SARS-CoV-2 was not detected in cardiac tissue, host transcriptomics showed upregulation of genes associated with DNA damage and repair, heat shock, and M1-like macrophage infiltration in the cardiac tissues of COVID-19 patients. The DNA damage present in the SARS-CoV-2 patient samples, were further confirmed by γ-H2Ax immunohistochemistry. In comparison, pH1N1 showed upregulation of interferon-stimulated genes, in particular interferon and complement pathways, when compared with COVID-19 patients. These data demonstrate the emergence of distinct transcriptomic profiles in cardiac tissues of SARS-CoV-2 and pH1N1 influenza infection supporting the need for a greater understanding of the effects on extra-pulmonary organs, including the cardiovascular system of COVID-19 patients, to delineate the immunopathobiology of SARS-CoV-2 infection, and long term impact on health.


Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Humanos , SARS-CoV-2 , Transcriptoma , Interferones
11.
Eur Respir J ; 59(6)2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34675048

RESUMEN

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which emerged in late 2019 has spread globally, causing a pandemic of respiratory illness designated coronavirus disease 2019 (COVID-19). A better definition of the pulmonary host response to SARS-CoV-2 infection is required to understand viral pathogenesis and to validate putative COVID-19 biomarkers that have been proposed in clinical studies. METHODS: Here, we use targeted transcriptomics of formalin-fixed paraffin-embedded tissue using the NanoString GeoMX platform to generate an in-depth picture of the pulmonary transcriptional landscape of COVID-19, pandemic H1N1 influenza and uninfected control patients. RESULTS: Host transcriptomics showed a significant upregulation of genes associated with inflammation, type I interferon production, coagulation and angiogenesis in the lungs of COVID-19 patients compared to non-infected controls. SARS-CoV-2 was non-uniformly distributed in lungs (emphasising the advantages of spatial transcriptomics) with the areas of high viral load associated with an increased type I interferon response. Once the dominant cell type present in the sample, within patient correlations and patient-patient variation, had been controlled for, only a very limited number of genes were differentially expressed between the lungs of fatal influenza and COVID-19 patients. Strikingly, the interferon-associated gene IFI27, previously identified as a useful blood biomarker to differentiate bacterial and viral lung infections, was significantly upregulated in the lungs of COVID-19 patients compared to patients with influenza. CONCLUSION: Collectively, these data demonstrate that spatial transcriptomics is a powerful tool to identify novel gene signatures within tissues, offering new insights into the pathogenesis of SARS-COV-2 to aid in patient triage and treatment.


Asunto(s)
COVID-19 , Gripe Humana , Interferón Tipo I , COVID-19/genética , Humanos , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana/genética , Interferón Tipo I/metabolismo , Pulmón/patología , SARS-CoV-2
12.
Front Immunol ; 13: 1060438, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36685600

RESUMEN

Purpose: Robust biomarkers that predict disease outcomes amongst COVID-19 patients are necessary for both patient triage and resource prioritisation. Numerous candidate biomarkers have been proposed for COVID-19. However, at present, there is no consensus on the best diagnostic approach to predict outcomes in infected patients. Moreover, it is not clear whether such tools would apply to other potentially pandemic pathogens and therefore of use as stockpile for future pandemic preparedness. Methods: We conducted a multi-cohort observational study to investigate the biology and the prognostic role of interferon alpha-inducible protein 27 (IFI27) in COVID-19 patients. Results: We show that IFI27 is expressed in the respiratory tract of COVID-19 patients and elevated IFI27 expression in the lower respiratory tract is associated with the presence of a high viral load. We further demonstrate that the systemic host response, as measured by blood IFI27 expression, is associated with COVID-19 infection. For clinical outcome prediction (e.g., respiratory failure), IFI27 expression displays a high sensitivity (0.95) and specificity (0.83), outperforming other known predictors of COVID-19 outcomes. Furthermore, IFI27 is upregulated in the blood of infected patients in response to other respiratory viruses. For example, in the pandemic H1N1/09 influenza virus infection, IFI27-like genes were highly upregulated in the blood samples of severely infected patients. Conclusion: These data suggest that prognostic biomarkers targeting the family of IFI27 genes could potentially supplement conventional diagnostic tools in future virus pandemics, independent of whether such pandemics are caused by a coronavirus, an influenza virus or another as yet-to-be discovered respiratory virus.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Humanos , COVID-19/diagnóstico , COVID-19/genética , SARS-CoV-2/genética , Gripe Humana/diagnóstico , Gripe Humana/epidemiología , Gripe Humana/genética , Biomarcadores , Proteínas de la Membrana/genética
14.
Commun Biol ; 4(1): 1067, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34518628

RESUMEN

Cell embedment into a solid support matrix is considered essential for the culture of intestinal epithelial organoids and tumoroids, but this technique presents challenges that impede scalable culture expansion, experimental manipulation, high-throughput screening and diagnostic applications. We have developed a low-viscosity matrix (LVM) suspension culture method that enables efficient establishment and propagation of organoids and tumoroids from the human large intestine. Organoids and tumoroids cultured in LVM suspension recapitulate the morphological development observed in solid matrices, with tumoroids reflecting the histological features and genetic heterogeneity of primary colorectal cancers. We demonstrate the utility of LVM suspension culture for organoid and tumoroid bioreactor applications and biobanking, as well as tumoroid high-throughput drug sensitivity testing. These methods provide opportunities for the study and use of patient-derived organoids and tumoroids from the large intestine.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Intestino Grueso , Organoides/fisiología , Animales , Línea Celular Tumoral , Humanos , Ratones
15.
Sci Rep ; 11(1): 19056, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34561502

RESUMEN

Hairy cell leukaemia (HCL) is a rare CD20+ B cell malignancy characterised by rare "hairy" B cells and extensive bone marrow (BM) infiltration. Frontline treatment with the purine analogue cladribine (CDA) results in a highly variable response duration. We hypothesised that analysis of the BM tumour microenvironment would identify prognostic biomarkers of response to CDA. HCL BM immunology pre and post CDA treatment and healthy controls were analysed using Digital Spatial Profiling to assess the expression of 57 proteins using an immunology panel. A bioinformatics pipeline was developed to accommodate the more complex experimental design of a spatially resolved study. Treatment with CDA was associated with the reduction in expression of HCL tumour markers (CD20, CD11c) and increased expression of myeloid markers (CD14, CD68, CD66b, ARG1). Expression of HLA-DR, STING, CTLA4, VISTA, OX40L were dysregulated pre- and post-CDA. Duration of response to treatment was associated with greater reduction in tumour burden and infiltration by CD8 T cells into the BM post-CDA. This is the first study to provide a high multiplex analysis of HCL BM microenvironment demonstrating significant immune dysregulation and identify biomarkers of response to CDA. With validation in future studies, prospective application of these biomarkers could allow early identification and increased monitoring in patients at increased relapse risk post CDA.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Leucemia de Células Pilosas/patología , Microambiente Tumoral , Adulto , Estudios de Casos y Controles , Femenino , Humanos , Leucemia de Células Pilosas/inmunología , Leucemia de Células Pilosas/metabolismo , Complejo Mayor de Histocompatibilidad/inmunología , Masculino , Persona de Mediana Edad , Pronóstico
16.
Mol Cancer Res ; 19(11): 1831-1839, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34330843

RESUMEN

Medulloblastoma is the most common malignant pediatric brain tumor and there is an urgent need for molecularly targeted and subgroup-specific therapies. The stem cell factor SOX9, has been proposed as a potential therapeutic target for the treatment of Sonic Hedgehog medulloblastoma (SHH-MB) subgroup tumors, given its role as a downstream target of Hedgehog signaling and in functionally promoting SHH-MB metastasis and treatment resistance. However, the functional requirement for SOX9 in the genesis of medulloblastoma remains to be determined. Here we report a previously undocumented level of SOX9 expression exclusively in proliferating granule cell precursors (GCP) of the postnatal mouse cerebellum, which function as the medulloblastoma-initiating cells of SHH-MBs. Wild-type GCPs express comparatively lower levels of SOX9 than neural stem cells and mature astroglia and SOX9low GCP-like tumor cells constitute the bulk of both infant (Math1Cre:Ptch1lox/lox ) and adult (Ptch1LacZ/+ ) SHH-MB mouse models. Human medulloblastoma single-cell RNA data analyses reveal three distinct SOX9 populations present in SHH-MB and noticeably absent in other medulloblastoma subgroups: SOX9 + MATH1 + (GCP), SOX9 + GFAP + (astrocytes) and SOX9 + MATH1 + GFAP + (potential tumor-derived astrocytes). To functionally address whether SOX9 is required as a downstream effector of Hedgehog signaling in medulloblastoma tumor cells, we ablated Sox9 using a Math1Cre model system. Surprisingly, targeted ablation of Sox9 in GCPs (Math1Cre:Sox9lox/lox ) revealed no overt phenotype and loss of Sox9 in SHH-MB (Math1Cre:Ptch1lox/lox;Sox9lox/lox ) does not affect tumor formation. IMPLICATIONS: Despite preclinical data indicating SOX9 plays a key role in SHH-MB biology, our data argue against SOX9 as a viable therapeutic target.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Hedgehog/metabolismo , Meduloblastoma/genética , Factor de Transcripción SOX9/metabolismo , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Humanos , Meduloblastoma/fisiopatología , Ratones , Transducción de Señal
17.
Cell Death Dis ; 12(3): 268, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712556

RESUMEN

Targeting cell division by chemotherapy is a highly effective strategy to treat a wide range of cancers. However, there are limitations of many standard-of-care chemotherapies: undesirable drug toxicity, side-effects, resistance and high cost. New small molecules which kill a wide range of cancer subtypes, with good therapeutic window in vivo, have the potential to complement the current arsenal of anti-cancer agents and deliver improved safety profiles for cancer patients. We describe results with a new anti-cancer small molecule, WEHI-7326, which causes cell cycle arrest in G2/M, cell death in vitro, and displays efficacious anti-tumor activity in vivo. WEHI-7326 induces cell death in a broad range of cancer cell lines, including taxane-resistant cells, and inhibits growth of human colon, brain, lung, prostate and breast tumors in mice xenografts. Importantly, the compound elicits tumor responses as a single agent in patient-derived xenografts of clinically aggressive, treatment-refractory neuroblastoma, breast, lung and ovarian cancer. In combination with standard-of-care, WEHI-7326 induces a remarkable complete response in a mouse model of high-risk neuroblastoma. WEHI-7326 is mechanistically distinct from known microtubule-targeting agents and blocks cells early in mitosis to inhibit cell division, ultimately leading to apoptotic cell death. The compound is simple to produce and possesses favorable pharmacokinetic and toxicity profiles in rodents. It represents a novel class of anti-cancer therapeutics with excellent potential for further development due to the ease of synthesis, simple formulation, moderate side effects and potent in vivo activity. WEHI-7326 has the potential to complement current frontline anti-cancer drugs and to overcome drug resistance in a wide range of cancers.


Asunto(s)
Antimitóticos/farmacología , Resistencia a Antineoplásicos , Neoplasias/tratamiento farmacológico , Animales , Antimitóticos/farmacocinética , Antimitóticos/toxicidad , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Células Hep G2 , Humanos , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Mitosis/efectos de los fármacos , Neoplasias/patología , Células PC-3 , Ratas Sprague-Dawley , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
18.
BMC Bioinformatics ; 21(1): 95, 2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32126976

RESUMEN

BACKGROUND: Many cancers arise from mutations in cells within epithelial tissues. Mutations manifesting at the subcellular level influence the structure and function of the tissue resulting in cancer. Previous work has proposed how cell level properties can lead to mutant cell invasion, but has not incorporated detailed subcellular modelling RESULTS: We present a framework that allows the straightforward integration and simulation of SBML representations of subcellular dynamics within multiscale models of epithelial tissues. This allows us to investigate the effect of mutations in subcellular pathways on the migration of cells within the colorectal crypt. Using multiple models we find that mutations in APC, a key component in the Wnt signalling pathway, can bias neutral drift and can also cause downward invasion of mutant cells in the crypt. CONCLUSIONS: Our framework allows us to investigate how subcellular mutations, i.e. knockouts and knockdowns, affect cell-level properties and the resultant migration of cells within epithelial tissues. In the context of the colorectal crypt, we see that mutations in APC can lead directly to mutant cell invasion.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Modelos Biológicos , Adhesión Celular , Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales/patología , Bases de Datos Factuales , Humanos , Mutación , Vía de Señalización Wnt
19.
Gut ; 69(5): 841-851, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31409604

RESUMEN

OBJECTIVE: We evaluated the influence of the renin-angiotensin system (RAS) on intestinal inflammation and fibrosis. DESIGN: Cultured human colonic myofibroblast proliferation and collagen secretion were assessed following treatment with angiotensin (Ang) II and Ang (1-7), their receptor antagonists candesartan and A779, and the ACE inhibitor captopril. Circulating and intestinal RAS components were evaluated in patients with and without IBD. Disease outcomes in patients with IBD treated with ACE inhibitors and angiotensin receptor blockers (ARBs) were assessed in retrospective studies. RESULTS: Human colonic myofibroblast proliferation was reduced by Ang (1-7) in a dose-dependent manner (p<0.05). Ang II marginally but not significantly increased proliferation, an effect reversed by candesartan (p<0.001). Colonic myofibroblast collagen secretion was reduced by Ang (1-7) (p<0.05) and captopril (p<0.001), and was increased by Ang II (p<0.001). Patients with IBD had higher circulating renin (mean 25.4 vs 18.6 mIU/L, p=0.026) and ACE2:ACE ratio (mean 0.92 vs 0.69, p=0.015) than controls without IBD. RAS gene transcripts and peptides were identified in healthy and diseased bowels. Colonic mucosal Masson's trichrome staining correlated with Ang II (r=0.346, p=0.010) and inversely with ACE2 activity (r=-0.373, p=0.006). Patients with IBD who required surgery (1/37 vs 12/75, p=0.034) and hospitalisation (0/34 vs 8/68, p=0.049) over 2 years were less often treated with ACE inhibitors and ARBs than patients not requiring surgery or hospitalisation. CONCLUSIONS: The RAS mediates fibrosis in human cell cultures, is expressed in the intestine and perturbed in intestinal inflammation, and agents targeting this system are associated with improved disease outcomes.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Bencimidazoles/farmacología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Miofibroblastos/efectos de los fármacos , Sistema Renina-Angiotensina/efectos de los fármacos , Tetrazoles/farmacología , Adulto , Compuestos de Bifenilo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Estudios de Cohortes , Colon/citología , Relación Dosis-Respuesta a Droga , Sistemas de Liberación de Medicamentos , Femenino , Fibrosis/tratamiento farmacológico , Fibrosis/patología , Humanos , Enfermedades Inflamatorias del Intestino/patología , Masculino , Miofibroblastos/citología , Estudios Retrospectivos , Sensibilidad y Especificidad
20.
Cell Death Differ ; 27(2): 742-757, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31296963

RESUMEN

Gastrointestinal epithelial cells provide a selective barrier that segregates the host immune system from luminal microorganisms, thereby contributing directly to the regulation of homeostasis. We have shown that from early embryonic development Bcl-G, a Bcl-2 protein family member with unknown function, was highly expressed in gastrointestinal epithelial cells. While Bcl-G was dispensable for normal growth and development in mice, the loss of Bcl-G resulted in accelerated progression of colitis-associated cancer. A label-free quantitative proteomics approach revealed that Bcl-G may contribute to the stability of a mucin network, which when disrupted, is linked to colon tumorigenesis. Consistent with this, we observed a significant reduction in Bcl-G expression in human colorectal tumors. Our study identifies an unappreciated role for Bcl-G in colon cancer.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Inflamación/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Animales , Colitis/metabolismo , Colitis/patología , Neoplasias Colorrectales/patología , Humanos , Inflamación/patología , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas c-bcl-2/deficiencia , Proteínas Proto-Oncogénicas c-bcl-2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...