Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
bioRxiv ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38559265

RESUMEN

The microbiome is a complex community of microorganisms, encompassing prokaryotic (bacterial and archaeal), eukaryotic, and viral entities. This microbial ensemble plays a pivotal role in influencing the health and productivity of diverse ecosystems while shaping the web of life. However, many software suites developed to study microbiomes analyze only the prokaryotic community and provide limited to no support for viruses and microeukaryotes. Previously, we introduced the Viral Eukaryotic Bacterial Archaeal (VEBA) open-source software suite to address this critical gap in microbiome research by extending genome-resolved analysis beyond prokaryotes to encompass the understudied realms of eukaryotes and viruses. Here we present VEBA 2.0 with key updates including a comprehensive clustered microeukaryotic protein database, rapid genome/protein-level clustering, bioprospecting, non-coding/organelle gene modeling, genome-resolved taxonomic/pathway profiling, long-read support, and containerization. We demonstrate VEBA's versatile application through the analysis of diverse case studies including marine water, Siberian permafrost, and white-tailed deer lung tissues with the latter showcasing how to identify integrated viruses. VEBA represents a crucial advancement in microbiome research, offering a powerful and accessible platform that bridges the gap between genomics and biotechnological solutions.

2.
Res Sq ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38496464

RESUMEN

Background: Patients with COVID-19 under invasive mechanical ventilation are at higher risk of developing ventilator-associated pneumonia (VAP), associated with increased healthcare costs, and unfavorable prognosis. The underlying mechanisms of this phenomenon have not been thoroughly dissected. Therefore, this study attempted to bridge this gap by performing a lung microbiota analysis and evaluating the host immune responses that could drive the development of VAP. Materials and methods: In this prospective cohort study, mechanically ventilated patients with confirmed SARS-CoV-2 infection were enrolled. Nasal swabs (NS), endotracheal aspirates (ETA), and blood samples were collected initially within 12 hours of intubation and again at 72 hours post-intubation. Plasma samples underwent cytokine and metabolomic analyses, while NS and ETA samples were sequenced for lung microbiome examination. The cohort was categorized based on the development of VAP. Data analysis was conducted using RStudio version 4.3.1. Results: In a study of 36 COVID-19 patients on mechanical ventilation, significant differences were found in the nasal and pulmonary microbiome, notably in Staphylococcus and Enterobacteriaceae, linked to VAP. Patients with VAP showed a higher SARS-CoV-2 viral load, elevated neutralizing antibodies, and reduced inflammatory cytokines, including IFN-δ, IL-1ß, IL-12p70, IL-18, IL-6, TNF-α, and CCL4. Metabolomic analysis revealed changes in 22 metabolites in non-VAP patients and 27 in VAP patients, highlighting D-Maltose-Lactose, Histidinyl-Glycine, and various phosphatidylcholines, indicating a metabolic predisposition to VAP. Conclusions: This study reveals a critical link between respiratory microbiome alterations and ventilator-associated pneumonia in COVID-19 patients, with elevated SARS-CoV-2 levels and metabolic changes, providing novel insights into the underlying mechanisms of VAP with potential management and prevention implications.

3.
Gut Pathog ; 15(1): 44, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730725

RESUMEN

Rotaviruses (RVs) are the most common etiological agent of acute gastroenteritis among young children, even after vaccine introduction in low-income countries. A whole-genome classification representing the 11 RV genes, was introduced for surveillance and characterization of RVs. This study characterized the common circulating strains in Vellore, India from 2002 to 2017 to understand rotavirus strain diversity and evolution using Whole genome sequencing (WGS) carried out on Illumina MiSeq. The 89% (92% of Wa-like, 86% of DS-1-like) of strains had classical constellations, while reassortant constellations were seen in 11% (8% of Wa-like, 14% of DS-1-like) of the strains. The rare E6-NSP4 in combination with DS-1 like G1P[8] and the emergence of the OP-354 subtype of P[8] were identified. Phylogenetics of RV strains revealed multiple subtypes circulating in the past 15 years, with strong evidence of animal to human gene transmission among several strains.

5.
Nat Immunol ; 24(10): 1616-1627, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37667052

RESUMEN

Millions of people are suffering from Long COVID or post-acute sequelae of COVID-19 (PASC). Several biological factors have emerged as potential drivers of PASC pathology. Some individuals with PASC may not fully clear the coronavirus SARS-CoV-2 after acute infection. Instead, replicating virus and/or viral RNA-potentially capable of being translated to produce viral proteins-persist in tissue as a 'reservoir'. This reservoir could modulate host immune responses or release viral proteins into the circulation. Here we review studies that have identified SARS-CoV-2 RNA/protein or immune responses indicative of a SARS-CoV-2 reservoir in PASC samples. Mechanisms by which a SARS-CoV-2 reservoir may contribute to PASC pathology, including coagulation, microbiome and neuroimmune abnormalities, are delineated. We identify research priorities to guide the further study of a SARS-CoV-2 reservoir in PASC, with the goal that clinical trials of antivirals or other therapeutics with potential to clear a SARS-CoV-2 reservoir are accelerated.


Asunto(s)
COVID-19 , Humanos , Síndrome Post Agudo de COVID-19 , ARN Viral/genética , SARS-CoV-2 , Antivirales , Progresión de la Enfermedad
6.
Heliyon ; 9(7): e17958, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37483779

RESUMEN

A growing number of studies indicate that coronavirus disease 2019 (COVID-19) is associated with inflammatory sequelae, but molecular signatures governing the normal versus pathologic convalescence process have not been well-delineated. Here, we characterized global immune and proteome responses in matched plasma and saliva samples obtained from COVID-19 patients collected between 20 and 90 days after initial clinical symptoms resolved. Convalescent subjects showed robust total IgA and IgG responses and positive antibody correlations in saliva and plasma samples. Shotgun proteomics revealed persistent inflammatory patterns in convalescent samples including dysfunction of salivary innate immune cells, such as neutrophil markers (e.g., myeloperoxidase), and clotting factors in plasma (e.g., fibrinogen), with positive correlations to acute COVID-19 disease severity. Saliva samples were characterized by higher concentrations of IgA, and proteomics showed altered myeloid-derived pathways that correlated positively with SARS-CoV-2 IgA levels. Beyond plasma, our study positions saliva as a viable fluid to monitor normal and aberrant immune responses including vascular, inflammatory, and coagulation-related sequelae.

7.
Front Genet ; 14: 1172048, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37229191

RESUMEN

Introduction: The unpredictable evolution of avian influenza viruses (AIVs) presents an ongoing threat to agricultural production and public and wildlife health. Severe outbreaks of highly pathogenic H5N1 viruses in US poultry and wild birds since 2022 highlight the urgent need to understand the changing ecology of AIV. Surveillance of gulls in marine coastal environments has intensified in recent years to learn how their long-range pelagic movements potentially facilitate inter-hemispheric AIV movements. In contrast, little is known about inland gulls and their role in AIV spillover, maintenance, and long-range dissemination. Methods: To address this gap, we conducted active AIV surveillance in ring-billed gulls (Larus delawarensis) and Franklin's gulls (Leucophaeus pipixcan) in Minnesota's natural freshwater lakes during the summer breeding season and in landfills during fall migration (1,686 samples). Results: Whole-genome AIV sequences obtained from 40 individuals revealed three-lineage reassortants with a mix of genome segments from the avian Americas lineage, avian Eurasian lineage, and a global "Gull" lineage that diverged more than 50 years ago from the rest of the AIV global gene pool. No poultry viruses contained gull-adapted H13, NP, or NS genes, pointing to limited spillover. Geolocators traced gull migration routes across multiple North American flyways, explaining how inland gulls imported diverse AIV lineages from distant locations. Migration patterns were highly varied and deviated far from assumed "textbook" routes. Discussion: Viruses circulating in Minnesota gulls during the summer breeding season in freshwater environments reappeared in autumn landfills, evidence of AIV persistence in gulls between seasons and transmission between habitats. Going forward, wider adoption of technological advances in animal tracking devices and genetic sequencing is needed to expand AIV surveillance in understudied hosts and habitats.

8.
Proc Natl Acad Sci U S A ; 120(17): e2208718120, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37068231

RESUMEN

The hemagglutinin (HA) stem region is a major target of universal influenza vaccine efforts owing to the presence of highly conserved epitopes across multiple influenza A virus (IAV) strains and subtypes. To explore the potential impact of vaccine-induced immunity targeting the HA stem, we examined the fitness effects of viral escape from stem-binding broadly neutralizing antibodies (stem-bnAbs). Recombinant viruses containing each individual antibody escape substitution showed diminished replication compared to wild-type virus, indicating that stem-bnAb escape incurred fitness costs. A second-site mutation in the HA head domain (N129D; H1 numbering) reduced the fitness effects observed in primary cell cultures and likely enabled the selection of escape mutations. Functionally, this putative permissive mutation increased HA avidity for its receptor. These results suggest a mechanism of epistasis in IAV, wherein modulating the efficiency of attachment eases evolutionary constraints imposed by the requirement for membrane fusion. Taken together, the data indicate that viral escape from stem-bnAbs is costly but highlights the potential for epistatic interactions to enable evolution within the functionally constrained HA stem domain.


Asunto(s)
Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes/genética , Epistasis Genética , Glicoproteínas Hemaglutininas del Virus de la Influenza , Vacunas contra la Influenza/genética , Hemaglutininas , Gripe Humana/genética , Gripe Humana/prevención & control
9.
Crit Care ; 27(1): 155, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37081485

RESUMEN

BACKGROUND: The mechanisms used by SARS-CoV-2 to induce major adverse cardiac events (MACE) are unknown. Thus, we aimed to determine if SARS-CoV-2 can induce necrotic cell death to promote MACE in patients with severe COVID-19. METHODS: This observational prospective cohort study includes experiments with hamsters and human samples from patients with severe COVID-19. Cytokines and serum biomarkers were analysed in human serum. Cardiac transcriptome analyses were performed in hamsters' hearts. RESULTS: From a cohort of 70 patients, MACE was documented in 26% (18/70). Those who developed MACE had higher Log copies/mL of SARS-CoV-2, troponin-I, and pro-BNP in serum. Also, the elevation of IP-10 and a major decrease in levels of IL-17ɑ, IL-6, and IL-1rɑ were observed. No differences were found in the ability of serum antibodies to neutralise viral spike proteins in pseudoviruses from variants of concern. In hamster models, we found a stark increase in viral titters in the hearts 4 days post-infection. The cardiac transcriptome evaluation resulted in the differential expression of ~ 9% of the total transcripts. Analysis of transcriptional changes in the effectors of necroptosis (mixed lineage kinase domain-like, MLKL) and pyroptosis (gasdermin D) showed necroptosis, but not pyroptosis, to be elevated. An active form of MLKL (phosphorylated MLKL, pMLKL) was elevated in hamster hearts and, most importantly, in the serum of MACE patients. CONCLUSION: SARS-CoV-2 identification in the systemic circulation is associated with MACE and necroptosis activity. The increased pMLKL and Troponin-I indicated the occurrence of necroptosis in the heart and suggested necroptosis effectors could serve as biomarkers and/or therapeutic targets. Trial registration Not applicable.


Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Humanos , Proteínas Quinasas , Necroptosis , Estudios Prospectivos , Troponina I , SARS-CoV-2 , Biomarcadores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores
10.
Res Sq ; 2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36711834

RESUMEN

Background The mechanisms used by SARS-CoV-2 to induce major adverse cardiac events (MACE) are unknown. Thus, we aimed to determine if SARS-CoV-2 can infect the heart to kill cardiomyocytes and induce MACE in patients with severe COVID-19. Methods This observational prospective cohort study includes experiments with hamsters and human samples from patients with severe COVID-19. Cytokines and serum biomarkers were analyzed in human serum. Cardiac transcriptome analyses were performed in hamsters' hearts. Results From a cohort of 70 patients, MACE was documented in 26% (18/70). Those who developed MACE had higher Log copies/mL of SARS-CoV-2, troponin-I, and pro-BNP in serum. Also, the elevation of IP-10 and a major decrease in levels of IL-17ɑ, IL-6, and IL-1rɑ were observed. No differences were found in the ability of serum antibodies to neutralize viral spike proteins in pseudoviruses from variants of concern. In hamster models, we found a stark increase in viral titers in the hearts 4 days post-infection. The cardiac transcriptome evaluation resulted in the differential expression of ~ 9% of the total transcripts. Analysis of transcriptional changes of the effectors of necroptosis (mixed lineage kinase domain-like, MLKL) and pyroptosis (gasdermin D) showed necroptosis, but not pyroptosis, to be elevated. Active form of MLKL (phosphorylated MLKL, pMLKL) was elevated in hamster hearts and, most importantly, in the serum of MACE patients. Conclusion SARS-CoV-2 can reach the heart during severe COVID-19 and induce necroptosis in the heart of patients with MACE. Thus, pMLKL could be used as a biomarker of cardiac damage and a therapeutic target. Trial registration: Not applicable.

11.
Elife ; 112022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36239699

RESUMEN

Background: The great majority of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infections are mild and uncomplicated, but some individuals with initially mild COVID-19 progressively develop more severe symptoms. Furthermore, there is substantial heterogeneity in SARS-CoV-2-specific memory immune responses following infection. There remains a critical need to identify host immune biomarkers predictive of clinical and immunological outcomes in SARS-CoV-2-infected patients. Methods: Leveraging longitudinal samples and data from a clinical trial (N=108) in SARS-CoV-2-infected outpatients, we used host proteomics and transcriptomics to characterize the trajectory of the immune response in COVID-19 patients. We characterized the association between early immune markers and subsequent disease progression, control of viral shedding, and SARS-CoV-2-specific T cell and antibody responses measured up to 7 months after enrollment. We further compared associations between early immune markers and subsequent T cell and antibody responses following natural infection with those following mRNA vaccination. We developed machine-learning models to predict patient outcomes and validated the predictive model using data from 54 individuals enrolled in an independent clinical trial. Results: We identify early immune signatures, including plasma RIG-I levels, early IFN signaling, and related cytokines (CXCL10, MCP1, MCP-2, and MCP-3) associated with subsequent disease progression, control of viral shedding, and the SARS-CoV-2-specific T cell and antibody response measured up to 7 months after enrollment. We found that several biomarkers for immunological outcomes are shared between individuals receiving BNT162b2 (Pfizer-BioNTech) vaccine and COVID-19 patients. Finally, we demonstrate that machine-learning models using 2-7 plasma protein markers measured early within the course of infection are able to accurately predict disease progression, T cell memory, and the antibody response post-infection in a second, independent dataset. Conclusions: Early immune signatures following infection can accurately predict clinical and immunological outcomes in outpatients with COVID-19 using validated machine-learning models. Funding: Support for the study was provided from National Institute of Health/National Institute of Allergy and Infectious Diseases (NIH/NIAID) (U01 AI150741-01S1 and T32-AI052073), the Stanford's Innovative Medicines Accelerator, National Institutes of Health/National Institute on Drug Abuse (NIH/NIDA) DP1DA046089, and anonymous donors to Stanford University. Peginterferon lambda provided by Eiger BioPharmaceuticals.


Asunto(s)
COVID-19 , Humanos , Anticuerpos Antivirales , Biomarcadores , Vacuna BNT162 , Citocinas/metabolismo , Progresión de la Enfermedad , ARN Mensajero , SARS-CoV-2 , Ensayos Clínicos como Asunto
12.
Cell Rep Med ; 3(6): 100640, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35588734

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific CD4+ T cells are likely important in immunity against coronavirus 2019 (COVID-19), but our understanding of CD4+ longitudinal dynamics following infection and of specific features that correlate with the maintenance of neutralizing antibodies remains limited. Here, we characterize SARS-CoV-2-specific CD4+ T cells in a longitudinal cohort of 109 COVID-19 outpatients enrolled during acute infection. The quality of the SARS-CoV-2-specific CD4+ response shifts from cells producing interferon gamma (IFNγ) to tumor necrosis factor alpha (TNF-α) from 5 days to 4 months post-enrollment, with IFNγ-IL-21-TNF-α+ CD4+ T cells the predominant population detected at later time points. Greater percentages of IFNγ-IL-21-TNF-α+ CD4+ T cells on day 28 correlate with SARS-CoV-2-neutralizing antibodies measured 7 months post-infection (⍴ = 0.4, p = 0.01). mRNA vaccination following SARS-CoV-2 infection boosts both IFNγ- and TNF-α-producing, spike-protein-specific CD4+ T cells. These data suggest that SARS-CoV-2-specific, TNF-α-producing CD4+ T cells may play an important role in antibody maintenance following COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Linfocitos T CD4-Positivos , Humanos , Pacientes Ambulatorios , Linfocitos T , Factor de Necrosis Tumoral alfa
13.
Sci Transl Med ; 14(634): eabn7842, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35025672

RESUMEN

Multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that have mutations associated with increased transmission and antibody escape have arisen over the course of the current pandemic. Although the current vaccines have largely been effective against past variants, the number of mutations found on the Omicron (B.1.1.529) spike protein appear to diminish the protection conferred by preexisting immunity. Using vesicular stomatitis virus (VSV) pseudoparticles expressing the spike protein of several SARS-CoV-2 variants, we evaluated the magnitude and breadth of the neutralizing antibody response over time in individuals after infection and in mRNA-vaccinated individuals. We observed that boosting increases the magnitude of the antibody response to wild-type (D614), Beta, Delta, and Omicron variants; however, the Omicron variant was the most resistant to neutralization. We further observed that vaccinated healthy adults had robust and broad antibody responses, whereas responses may have been reduced in vaccinated pregnant women, underscoring the importance of learning how to maximize mRNA vaccine responses in pregnant populations. Findings from this study show substantial heterogeneity in the magnitude and breadth of responses after infection and mRNA vaccination and may support the addition of more conserved viral antigens to existing SARS-CoV-2 vaccines.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Adulto , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Femenino , Humanos , Embarazo , Complicaciones Infecciosas del Embarazo/inmunología , Complicaciones Infecciosas del Embarazo/prevención & control , Complicaciones Infecciosas del Embarazo/virología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Sintéticas/inmunología , Vacunas de ARNm/inmunología
14.
Sci Transl Med ; 14(635): eabm7853, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35040666

RESUMEN

A damaging inflammatory response is implicated in the pathogenesis of severe coronavirus disease 2019 (COVID-19), but mechanisms contributing to this response are unclear. In two prospective cohorts, early non-neutralizing, afucosylated immunoglobulin G (IgG) antibodies specific to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were associated with progression from mild to more severe COVID-19. To study the biology of afucosylated IgG immune complexes, we developed an in vivo model that revealed that human IgG-Fc-gamma receptor (FcγR) interactions could regulate inflammation in the lung. Afucosylated IgG immune complexes isolated from patients with COVID-19 induced inflammatory cytokine production and robust infiltration of the lung by immune cells. In contrast to the antibody structures that were associated with disease progression, antibodies that were elicited by messenger RNA SARS-CoV-2 vaccines were highly fucosylated and enriched in sialylation, both modifications that reduce the inflammatory potential of IgG. Vaccine-elicited IgG did not promote an inflammatory lung response. These results show that human IgG-FcγR interactions regulate inflammation in the lung and define distinct lung activities mediated by the IgG that are associated with protection against, or progression to, severe COVID-19.


Asunto(s)
COVID-19 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Formación de Anticuerpos , Vacunas contra la COVID-19 , Humanos , Estudios Prospectivos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
15.
Mol Ther ; 30(5): 2024-2047, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-34999208

RESUMEN

Conventional influenza vaccines fail to confer broad protection against diverse influenza A viruses with pandemic potential. Efforts to develop a universal influenza virus vaccine include refocusing immunity towards the highly conserved stalk domain of the influenza virus surface glycoprotein, hemagglutinin (HA). We constructed a non-replicating adenoviral (Ad) vector, encoding a secreted form of H1 HA, to evaluate HA stalk-focused immunity. The Ad5_H1 vaccine was tested in mice for its ability to elicit broad, cross-reactive protection against homologous, heterologous, and heterosubtypic lethal challenge in a single-shot immunization regimen. Ad5_H1 elicited hemagglutination inhibition (HI+) active antibodies (Abs), which conferred 100% sterilizing protection from homologous H1N1 challenge. Furthermore, Ad5_H1 rapidly induced H1-stalk-specific Abs with Fc-mediated effector function activity, in addition to stimulating both CD4+ and CD8+ stalk-specific T cell responses. This phenotype of immunity provided 100% protection from lethal challenge with a head-mismatched, reassortant influenza virus bearing a chimeric HA, cH6/1, in a stalk-mediated manner. Most importantly, 100% protection from mortality following lethal challenge with a heterosubtypic avian influenza virus, H5N1, was observed following a single immunization with Ad5_H1. In conclusion, Ad-based influenza vaccines can elicit significant breadth of protection in naive animals and could be considered for pandemic preparedness and stockpiling.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Adenoviridae/genética , Animales , Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Hemaglutininas , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Gripe Humana/prevención & control , Ratones , Ratones Endogámicos BALB C
16.
STAR Protoc ; 3(4): 101835, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36595901

RESUMEN

Evaluating the neutralizing antibody titer following SARS-CoV-2 vaccination is essential in defining correlates of protection. We describe an assay that uses single-cycle vesicular stomatitis virus (VSV) pseudoviruses linking a fluorophore with a spike (S) from a variant of concern (VOC). Using two fluorophores linked to two VOC S, respectively, allows us to determine the neutralization titer against two VOCs in a single run. This is a generalizable approach that saves time, samples, and run-to-run variability. For complete details on the use and execution of this protocol, please refer to Sievers et al. (2022).1.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Vacunas contra la COVID-19 , Pruebas de Neutralización/métodos , Anticuerpos Antivirales
17.
Viruses ; 13(7)2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34372525

RESUMEN

Zika virus (ZIKV) is a mosquito-borne Flavivirus with a positive-sense RNA genome, which are generally transmitted through the bite of an infected Aedes mosquito. ZIKV infections could be associated with neurological sequelae that, and otherwise produces similar clinical symptoms as other co-circulating pathogens. Past infection with one member of the Flavivirus genus often induces cross-reactive antibodies against other flaviruses. These attributes complicate the ability to differentially diagnose ZIKV infection from other endemic mosquito-borne viruses, making it both a public health issue as well as a diagnostic challenge. We report the results from serological analyses using arbovirus-specific peptides on 339 samples that were previously collected from 6 countries. Overall, we found that our multiplexed peptide-based ELISA was highly efficient for identifying ZIKV antibodies as early as 2 weeks post infection, and that it correlates with microneutralization, plaque reduction neutralization tests (PRNTs) and commercial tests for ZIKV in previously characterized samples. We observed that seropositivity varied by patient cohort, reflecting the sampling period in relation to the 2015-2016 ZIKV outbreak. This work evaluates the accuracy, specificity, and sensitivity of our peptide-based ELISA method for detecting ZIKV antibodies from geographically diverse regions. These findings can contribute to ongoing serological methods development and can be adapted for use in future studies.


Asunto(s)
Anticuerpos Antivirales/sangre , Ensayo de Inmunoadsorción Enzimática/métodos , Ensayo de Inmunoadsorción Enzimática/normas , Péptidos/inmunología , Infección por el Virus Zika/diagnóstico , Infección por el Virus Zika/inmunología , Virus Zika/inmunología , Adolescente , Adulto , Anciano , Niño , Preescolar , Estudios de Cohortes , Reacciones Cruzadas , Femenino , Ensayos Analíticos de Alto Rendimiento/métodos , Ensayos Analíticos de Alto Rendimiento/normas , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Lactante , Masculino , Persona de Mediana Edad , Sensibilidad y Especificidad , Adulto Joven , Virus Zika/química
18.
bioRxiv ; 2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-34075376

RESUMEN

A damaging inflammatory response is strongly implicated in the pathogenesis of severe COVID-19 but mechanisms contributing to this response are unclear. In two prospective cohorts, early non-neutralizing, afucosylated, anti-SARS-CoV-2 IgG predicted progression from mild, to more severe COVID-19. In contrast to the antibody structures that predicted disease progression, antibodies that were elicited by mRNA SARS-CoV-2 vaccines were low in Fc afucosylation and enriched in sialylation, both modifications that reduce the inflammatory potential of IgG. To study the biology afucosylated IgG immune complexes, we developed an in vivo model which revealed that human IgG-FcγR interactions can regulate inflammation in the lung. Afucosylated IgG immune complexes induced inflammatory cytokine production and robust infiltration of the lung by immune cells. By contrast, vaccine elicited IgG did not promote an inflammatory lung response. Here, we show that IgG-FcγR interactions can regulate inflammation in the lung and define distinct lung activities associated with the IgG that predict severe COVID-19 and protection against SARS-CoV-2. ONE SENTENCE SUMMARY: Divergent early antibody responses predict COVID-19 disease trajectory and mRNA vaccine response and are functionally distinct in vivo .

19.
Adv Drug Deliv Rev ; 172: 314-338, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33482248

RESUMEN

The ongoing SARS-CoV-2 pandemic has led to the focused application of resources and scientific expertise toward the goal of developing investigational vaccines to prevent COVID-19. The highly collaborative global efforts by private industry, governments and non-governmental organizations have resulted in a number of SARS-CoV-2 vaccine candidates moving to Phase III trials in a period of only months since the start of the pandemic. In this review, we provide an overview of the preclinical and clinical data on SARS-CoV-2 vaccines that are currently in Phase III clinical trials and in few cases authorized for emergency use. We further discuss relevant vaccine platforms and provide a discussion of SARS-CoV-2 antigens that may be targeted to increase the breadth and durability of vaccine responses.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , Ensayos Clínicos Fase III como Asunto/métodos , SARS-CoV-2/efectos de los fármacos , Animales , COVID-19/epidemiología , COVID-19/inmunología , Vacunas contra la COVID-19/química , Vacunas contra la COVID-19/inmunología , Evaluación Preclínica de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/tendencias , Humanos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , SARS-CoV-2/química , SARS-CoV-2/inmunología
20.
Nat Immunol ; 22(1): 67-73, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33169014

RESUMEN

Severe acute respiratory syndrome coronavirus 2 infections can cause coronavirus disease 2019 (COVID-19), which manifests with a range of severities from mild illness to life-threatening pneumonia and multi-organ failure. Severe COVID-19 is characterized by an inflammatory signature, including high levels of inflammatory cytokines, alveolar inflammatory infiltrates and vascular microthrombi. Here we show that patients with severe COVID-19 produced a unique serologic signature, including an increased likelihood of IgG1 with afucosylated Fc glycans. This Fc modification on severe acute respiratory syndrome coronavirus 2 IgGs enhanced interactions with the activating Fcγ receptor FcγRIIIa; when incorporated into immune complexes, Fc afucosylation enhanced production of inflammatory cytokines by monocytes, including interleukin-6 and tumor necrosis factor. These results show that disease severity in COVID-19 correlates with the presence of proinflammatory IgG Fc structures, including afucosylated IgG1.


Asunto(s)
COVID-19/inmunología , Citocinas/inmunología , Inmunoglobulina G/inmunología , Receptores de IgG/inmunología , SARS-CoV-2/inmunología , Adolescente , Adulto , Anciano , COVID-19/metabolismo , COVID-19/virología , Niño , Citocinas/metabolismo , Femenino , Glicosilación , Humanos , Inmunoglobulina G/metabolismo , Interleucina-6 , Masculino , Persona de Mediana Edad , Receptores de IgG/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Índice de Severidad de la Enfermedad , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...