Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Adv Sci (Weinh) ; : e2402616, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38828766

RESUMEN

Although possessing well-defined nanostructures and excellent multi-electron redox properties, polyoxometalate clusters have poor intrinsic electrical conductivity and are prone to aggregation due to large surface energy, which makes them difficult to be fully utilized when applying as electrode materials for lithium-ion batteries. In this paper, monodisperse K7MnV13O38 (MnV13) clusters are achieved by rationally utilizing nano-sized high conductive carbon dots (CDs) as stabilizers. Benefiting from the fully exposed redox sites of MnV13 clusters (high utilization rate) and sufficient interfaces with carbon dots (extra interfacial energy storage), the optimized MnV13/10CDs anode delivers a high discharge capacity up to 1348 mAh g-1 at a current density of 0.1 A g-1 and exhibits superb rate/cycling capabilities. Density functional theory (DFT) calculations verify that ionic archway channels are formed between MnV13 and CDs, eliminating the bandgap and greatly improving the electron/ion conductivity of MnV13 and CDs. This paper paves a brand-new way for synthesis of monodisperse clusters and maximization of extra interfacial energy storage.

2.
Adv Mater ; : e2407705, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38925587

RESUMEN

Polyoxometalates (POMs) have been considered as one of the most promising anode candidates for lithium-ion batteries (LIBs) in virtue of their high theoretical capacity and reversible multielectron redox properties. However, the poor intrinsic electronic conductivity, low specific surface area and high solubility in organic electrolytes hinder their widespread applications in LIBs. Herein, a novel hybrid nanomaterial is synthesized by co-assembling POMs and porphyrins (PMo12/CoTPyP) through a facile solvothermal method. The POMs clusters are stabilized by porphyrin units through electrostatic interactions, which simultaneously realizes the uniform dispersion of POMs and porphyrin units. Benefiting from the generated sub-1 nm channels for fast ion transport and the synergistic effect between evenly distributed PMo12 clusters and high-conductive CoTPyP units, the LIB based on the optimized PMo12/CoTPyP anode exhibits significant improved Li+ storage capability as well as superior rate and cycling performance. The results of density functional theory (DFT) simulations further reveal that the co-assembly of PMo12 and CoTPyP can accelerate the mobility of Li+ and electrons, which in turn promotes the enhancement of LIBs performance. This work paves a strategy for synthesizing POMs-based anode materials with simultaneously high dispersibility, redox activity and stability. This article is protected by copyright. All rights reserved.

3.
Angew Chem Int Ed Engl ; : e202405396, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38818672

RESUMEN

Reactive oxygen species (ROS) play a crucial role in determining photocatalytic reaction pathways, intermediate species, and product selectivity. However, research on ROS regulation in polymer photocatalysts is still in its early stages. Herein, we successfully achieved series of modulations to the skeleton of Pyrene-alkyne-based (Tetraethynylpyrene (TEPY)) conjugated porous polymers (CPPs) by altering the linkers (1,4-dibromobenzene (BE), 4,4'-dibromobiphenyl (IP), and 3,3'-dibromobiphenyl (BP)). Experiments combined with theoretical calculations indicate that BE-TEPY exhibits a planar structure with minimal exciton binding energy, which favors exciton dissociation followed by charge transfer with adsorbed O2 to produce •O2-. Thus BE-TEPY shows optimal photocatalytic activity for phenylboronic acid oxidation and [3+2] cycloaddition. Conversely, the skeleton of BP-TEPY is significantly distorted. Its planar conjugation decreases, intersystem crossing (ISC) efficiency increases, which makes it more prone for resonance energy transfer to generate 1O2. Therefore, BP-TEPY displays best photocatalytic activity in [4+2] cycloaddition and thioanisole oxidation. Both above reactant conversion and its product selectivity exceed 99%. This work systematically reveals the intrinsic structure-activity relationship among the skeleton structure of CPPs, excitonic behavior, and selective generation of ROS, providing new insights for the rational design of highly efficient and selective CPPs photocatalysts.

4.
Nutrients ; 16(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38794718

RESUMEN

OBJECTIVE: This study investigated the association of circulating levels of 25-hydroxyvitamin D (25[OH]D) with the risk of metabolic syndrome (MetS) and its components in adults. METHODS: This nationwide cohort involved 23,810 Chinese adults attending annual health evaluations. Serum 25(OH)D levels, MetS status, and covariates were determined at each examination. Among them, 8146, 3310, and 1971 completed two, three, and more than three evaluations, respectively. A hybrid mixed-effects and Cox regression model was employed to determine the cross-sectional and longitudinal relationships. RESULTS: The odds ratios (ORs) and 95% confidence intervals (CIs) of MetS were significantly lower in individuals within quartile 4 (vs. 1) of serum 25(OH)D for both between-individual (0.43 [0.35, 0.52]) and within-individual comparisons (0.60 [0.50, 0.73]), respectively (all p-trends < 0.001). Among the MetS components, the corresponding ORs (95% CI) in between- and within-individual comparisons were 0.40 (0.29, 0.54) and 0.26 (0.19, 0.36) for abdominal obesity, 0.49 (0.41, 0.58) and 0.78 (0.66, 0.93) for high triglycerides, 0.70 (0.59, 0.82) and 0.75 (0.64, 0.87) for hypertriglyceridemia, 0.48 (0.39, 0.59) and 0.87 (0.71, 1.07) for low HDL cholesterol, and 0.92 (0.76, 1.12) and 0.49 (0.41, 0.59) for hypertension, respectively. Decreased hazard ratios (95% CIs) in quartile 4 (vs. 1) of 25(OH)D were found for MetS (0.80 [0.65, 1.00]), high triglycerides (0.76 [0.62, 0.92]), abdominal obesity (0.77 [0.63, 0.96]), and low HDL cholesterol (0.64 [0.50, 0.81]). CONCLUSIONS: Decreased concentrations of serum 25(OH)D correlate significantly to a heightened MetS risk and specific components. Our findings underscore the potential preventive function of circulating vitamin D concerning metabolic disorders.


Asunto(s)
Síndrome Metabólico , Vitamina D , Humanos , Síndrome Metabólico/sangre , Síndrome Metabólico/epidemiología , Vitamina D/sangre , Vitamina D/análogos & derivados , Masculino , Femenino , Estudios Longitudinales , Persona de Mediana Edad , China/epidemiología , Adulto , Estudios Transversales , Factores de Riesgo , Obesidad Abdominal/sangre , Obesidad Abdominal/epidemiología , Pueblo Asiatico , Deficiencia de Vitamina D/epidemiología , Deficiencia de Vitamina D/sangre , Anciano , Oportunidad Relativa , Pueblos del Este de Asia
5.
Angew Chem Int Ed Engl ; 63(18): e202402095, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38450907

RESUMEN

Constructing stable and efficient photocatalysts for H2O2 production is of great importance and is challenging. In this study, the synthesis of three photoactive cyclooctatetrathiophene (COTh)-based porous aromatic frameworks (COTh-PAFs) in an alternating donor-acceptor (D-A) fashion is presented. In combination with a triazine-derived electron acceptor, PAF-363 exhibits high efficiency for the photosynthesis of H2O2 with production rates of 11733 µmol g-1 h-1(with sacrificial agent) and 3930 µmol g-1 h-1 (without sacrificial agent) from water and oxygen under visible light irradiation. Experimental results and theoretical calculations reveal that the charge transfer positions and the O2 adsorption sites in PAF-363 are both concentrated on COTh fragments, which facilitate the H2O2 production through the oxygen reduction reaction (ORR) pathway. This work highlights that the rational design of COTh-PAFs with consideration of D-A direction, charge transfer positions, and O2 adsorption sites provides a feasible access to efficient H2O2 production photocatalysts.

6.
Nanoscale ; 15(46): 18883-18890, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37974481

RESUMEN

Developing highly efficient, stable, and cost-effective two-dimensional (2D) conjugated polymers (CPs) for overall water splitting (OWS) is critical for producing clean and renewable hydrogen energy, yet it remains a great challenge. Here, we designed eight 2D CPs through the topological assembly of diacetylene and benzene-derived molecular linkers that can offer active sites for hydrogen and oxygen evolution reactions, and explored their structural, electronic, optical, and photocatalytic OWS properties by performing first-principles computations. It is shown that incorporating benzo-heterocyclic rings into CPs can significantly modulate the electronic structures of CPs and broaden the spectral absorption, suitable for visible-light-driven OWS. Remarkably, through a range of screening criteria, including stability, electronic band structures, band edge alignments, and photocatalytic activity, we found that CP-4 based on diacetylene and benzotrifuran can spontaneously trigger the OWS in a neutral environment under its own light-induced bias, eliminating the need for sacrificial agents or cocatalysts. Specifically, the HER active site is primarily located at diacetylene moieties, while the OER active site is mainly concentrated on the benzo-heterocyclic rings. Moreover, the ideal STH efficiency for OWS on CP-4 was estimated to be 13.87%, highlighting its potential as a prospective photocatalyst for large-scale industrial OWS. Our findings open a door to the rational design of novel polymer photocatalysts for OWS.

7.
BMC Neurol ; 23(1): 376, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37858051

RESUMEN

BACKGROUND: Endovascular recanalization in patients with symptomatic nonacute intracranial large artery occlusion (ILAO) has been reported to be feasible, but technically challenging. This study aimed to determine the predictors of successful endovascular recanalization in patients with symptomatic nonacute ILAO. METHODS: The outcomes of endovascular recanalization attempts performed in 70 consecutive patients showing symptomatic nonacute ILAO with hemodynamic cerebral ischemia between January 2016 to December 2022 were reviewed. Potential variables, including clinical and radiological characteristics related to technical success, were collected. Univariate analysis and multivariate logistic regression were performed to identify predictors of successful recanalization for nonacute ILAO. RESULTS: Technically successful recanalization was achieved in 57 patients (81.4%). The periprocedural complication rate was 21.4% (15 of 70), and the overall 30-day morbidity and mortality rates were 7.1% (5 of 70) and 2.9% (2 of 70), respectively. Univariate analysis showed that successful recanalization was associated with occlusion duration, stump morphology, occlusion length, slow distal antegrade flow sign, and the presence of bridging collateral vessels. Multivariate analysis showed that occlusion duration ≤ 3 months (odds ratio [OR]: 22.529; 95% confidence interval [CI]: 1.636-310.141), tapered stump (OR: 7.498; 95% CI: 1.533-36.671), and occlusion length < 10 mm (OR: 7.049; 95% CI: 1.402-35.441) were independent predictive factors for technical success of recanalization. CONCLUSIONS: Occlusion duration ≤ 3 months, tapered stump, and occlusion length < 10 mm were independent positive predictors of technical success of endovascular recanalization for symptomatic nonacute ILAO. These findings may help predict the likelihood of successful recanalization in patients with symptomatic nonacute ILAO and also provide a reference for the selection of appropriate patients. Further prospective and multicenter studies are required to validate our findings.


Asunto(s)
Arteriopatías Oclusivas , Procedimientos Endovasculares , Humanos , Resultado del Tratamiento , Arterias , Arteriopatías Oclusivas/diagnóstico por imagen , Arteriopatías Oclusivas/cirugía , Estudios Retrospectivos
8.
Angew Chem Int Ed Engl ; 62(45): e202312020, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37728941

RESUMEN

Single-ion conductive electrolytes can largely eliminate electrode polarization, reduce the proportion of anion migration and inhibit side reactions in batteries. However, they usually suffer from insufficient ion conductivity due to the strong interaction between cations and cationic receptors. Here we report an ultrafast light-responsive covalent organic frameworks (COF) with sulfonic acid groups modification as the acrylamide polymerization initiator. Benefiting from the reduced electrostatic interaction between Zn2+ and sulfonic acid groups through solvation effects, the as-prepared COF-based hydrogel electrolyte (TCOF-S-Gel) receives an ion conductivity of up to 27.2 mS/cm and Zn2+ transference number of up to 0.89. In addition, sufficient hydrogen bonds endow the single-ion conductive TCOF-S-Gel electrolyte to have good water retention and superb mechanical properties. The assembled Zn||TCOF-S-Gel||MnO2 full zinc-ion battery exhibits high discharge capacity (248 mAh/g at 1C), excellent rate capability (90 mAh/g at 10C) and superior cycling performance. These enviable results enlist the instantaneously photocured TCOF-S-Gel electrolyte to be qualified to large-scaled flexible high-performance quasi-solid-state zinc-ion batteries.

9.
Eur J Radiol ; 165: 110954, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37406584

RESUMEN

BACKGROUND: In order to identify individuals with chronic internal carotid artery occlusion (CICAO), it is essential to understand the integrity of the circle of Willis (CoW). This understanding is important as it may determine the potential benefits of active medical and endovascular treatments. PURPOSE: The objective of this study is to assess whether diminished integrity of the CoW can serve as a useful marker for identifying individuals with more severe impairment in cerebral blood perfusion and a higher incidence of cerebral infarction among asymptomatic or mildly affected patients with CICAO. MATERIALS AND METHODS: We conducted a retrospective review of asymptomatic or mildly affected patients with newly diagnosed CICAO who did not receive reperfusion therapies. The categorization of patients into good or poor integrity groups was based on the assessment of CoW integrity using CTA. We evaluated the volume and value of prolonged time to peak (TTP) in both groups, as well as the occurrence of new cerebral infarctions. Our analysis involved multivariate regression and receiver operating characteristic (ROC) analysis. RESULTS: Hemodynamic abnormalities characterized by prolonged TTP were observed in the affected side's blood supply region in all 38 patients. There was a notable difference in the volume and value of prolonged TTP between the two groups (P < 0.001). Correlation analyses based on CTP and CTA parameters revealed a negative relationship between CoW scores and both the abnormal volume (r = -0.624, P = 0.000) and value (r = -0.589, P = 0.000) of prolonged TTP. Upon multivariable adjustment, the independent predictors for new cerebral infarction and higher volume of prolonged TTP were solely the CoW status, with respective estimates of (b = 6.05; 95% confidence interval [CI]: 1.619, 22.619; P = 0.007) and (b = 35.486; 95% CI: 4.697, 268.088; P = 0.001). CONCLUSION: Assessing the integrity of the CoW is crucial in evaluating abnormal perfusion in asymptomatic or mildly affected individuals who are newly diagnosed with CICAO and have not undergone reperfusion therapy.


Asunto(s)
Enfermedades de las Arterias Carótidas , Estenosis Carotídea , Trombosis , Humanos , Círculo Arterial Cerebral/diagnóstico por imagen , Arteria Carótida Interna/diagnóstico por imagen , Estenosis Carotídea/diagnóstico por imagen , Infarto Cerebral , Circulación Cerebrovascular
10.
Angew Chem Int Ed Engl ; 62(30): e202305843, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37232089

RESUMEN

The development of a new electrolytic water hydrogen production coupling system is the key to realize efficient and low-cost hydrogen production and promote its practical application. Herein, a green and efficient electrocatalytic biomass to formic acid (FA) coupled hydrogen production system has been developed. In such a system, carbohydrates such as glucose are oxidized to FA using polyoxometalates (POMs) as the redox anolyte, while H2 is evolved continuously at the cathode. Among them, the yield of glucose to FA is as high as 62.5 %, and FA is the only liquid product. Furthermore, the system requires only 1.22 V to drive a current density of 50 mA cm-2 , and the Faraday efficiency of hydrogen production is close to 100 %. Its electrical consumption is only 2.9 kWh Nm-3 (H2 ), which is only 69 % of that of traditional electrolytic water. This work opens up a promising direction for low-cost hydrogen production coupled with efficient biomass conversion.

11.
J Colloid Interface Sci ; 644: 378-387, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37120886

RESUMEN

Ruthenium (Ru) electrocatalysts suffer from excessive aggregation during the hydrogen evolution reaction (HER), which hinders their practical application for hydrogen production. Hexagonal boron nitride (h-BN) is a potential carrier that could solve the above problem, but its wide band gap and low conductivity become obstacles. Herein, we provide a new, facile, low-cost, and effective strategy (killing two birds with one stone) to overcome the above issues. After modifying h-BN with reduced graphene oxide (rGO), a small amount of Ru nanoparticles (NPs) (2.2 %) are dispersed into BN with approximately uniform distribution and size control of Ru nanoparticles (∼3.85 nm). The strong synergy between Ru NPs and BN@C in the optimal Ru/BN@C (Ru wt.% = 2.22 %) electrocatalyst endows it an outstanding HER activity, with small HER overpotentials (η10 = 32 mV, 35 mV) and low Tafel slopes (33.89 mV dec-1, 37.66 mV dec-1) in both 1 M KOH and 0.5 M H2SO4 media, respectively, along with good long-term stability for 50 h. Based on density functional theory (DFT) calculations, the addition of Ru to BN has been successful in creating fresh active sites for H*, with good possible adsorption/desorption ability (ΔGH* = -0.24 eV) while preserving low water dissociation (ΔGb = 0.46 eV) in an alkaline environment. As a result, the Ru/BN composite exhibits outstanding HER activity in both acidic and alkaline conditions. Furthermore, this study provides, for the first time, a template-free strategy to develop a good and low-cost supporter (BN) for dispersing other noble metals and the formation of highly efficient HER/OER electrocatalysts.

12.
Chemistry ; 29(11): e202203419, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36396601

RESUMEN

To realize the direct and full use of the widely distributed solar energy, developing novel materials with superb photothermal conversion capability is essential. Although heteropoly blue has intrinsic outstanding solar absorption and photothermal conversion properties, its spectral absorption in the infrared region is weak. Here, composites of heteropoly blue and carbon nanotubes (HPB/CNTs) are synthesized depending on electrostatic interactions by facile microwave sonication and freeze-drying. The doped CNTs can dramatically improve the spectral absorption performance of HPB ontology in the infrared region. As a result, the light absorption of the optimized HPB/CNTs (20 %) reaches more than 95 % in the range of 200-2400 nm, showing promising prospects as high-performance photothermal conversion material in the applications of solar desalination and wastewater treatment.

13.
Front Cardiovasc Med ; 9: 934496, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186960

RESUMEN

The treatment of complex cerebrovascular diseases (CCVDs) at the skull base, such as complex intracranial aneurysms, carotid-cavernous sinus fistulas, and intracranial artery traumatic injuries, is a difficult clinical problem despite advances in endovascular and surgical therapies. Covered stents or stent graft insertion is a new concept for endovascular treatment that focuses on arterial wall defect reconstruction, differing from endovascular lesion embolization or flow diverter therapies. In recent years, covered stents specifically designed for cerebrovascular treatment have been applied in the clinical setting, allowing thousands of patients with CCVDs to undergo intraluminal reconstruction treatment and achieving positive results, even in the era of flow diverters. Since there is no unified reference standard for the application of covered stents for treating CCVDs, it is necessary to further standardize and guide the clinical application of this technique. Thus, we organized authoritative experts in the field of neurointervention in China to write an expert consensus, which aims to summarize the results of covered stent insertion in the treatment of CCVDs and propose suitable standards for its application in the clinical setting. Based on the contents of this consensus, clinicians can use individualized intraluminal reconstruction treatment techniques for patients with CCVDs.

14.
Adv Sci (Weinh) ; 9(28): e2202417, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35948503

RESUMEN

Screening high-efficiency 2D conjugated polymers toward visible-light-driven overall water splitting (OWS) is one of the most promising but challenging research directions to realize solar-to-hydrogen (STH) energy conversion and storage. "Mystery molecule" heptazine is an intriguing hydrogen evolution reaction (HER) building block. By covalently linking with the electron-rich alkynyl and phenyl oxygen evolution reaction (OER) active units, 10 experimentally feasible 2D covalent heptazine-based frameworks (CHFs) are constructed and screened four promising visible-light-driven OWS photocatalysts, which are linked by p-phenyl (CHF-4), p-phenylenediynyl (CHF-7), m-phenylenediynyl (CHF-8), and phenyltriynyl (CHF-9), respectively. Their HER and OER active sites achieve completely spatially separated, where HER active sites focus on heptazine units and OER active sites located on alkynyl or phenyl units. Their lower overpotentials allow them to spontaneously trigger the surface OWS reaction under their own light-induced bias without using any sacrificial agents and cocatalysts. Among them, CHF-7 shows the best photocatalytic performance with an ideal STH energy conversion efficiency estimated at 12.04%, indicating that it is a promising photocatalyst for industrial OWS. This work not only provides an innovative idea for the exploration of novel polymer photocatalysts for OWS but also supplies a direction for the development of heptazine derivatives.

15.
Inorg Chem ; 61(27): 10442-10453, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35758283

RESUMEN

The development of visible-light photocatalysts for the selective oxidative coupling of amines to imines is an area of great interest. Herein, four hybrid compounds based on polyoxometalate anions and tris(bipyridine)ruthenium cations, Ru(bpy)3[M6O19] (M = Mo, W) 1-2, [Ru(bpy)3]2[Mo8O26] 3, [Ru(bpy)3]2[W10O32] 4, are prepared and characterized by X-ray diffraction (single-crystal and powder), elemental analysis, energy-dispersive X-ray spectroscopy (EDS) analysis, infrared (IR) spectroscopy, and solid diffuse reflective spectroscopy. Single-crystal structural analysis indicates that polyoxometalate anions and tris(bipyridine)ruthenium cations interact with each other through extensive hydrogen bonds in these compounds. These hybrid species with strong visible-light-harvesting abilities and suitable photocatalytic energy potentials show excellent photocatalytic activity and selectivity for the oxidation of amines to imines at room temperature in air as an oxidant. Among them, compound 1 with the [Mo6O19]2- anion has the highest catalytic activity, which can swiftly convert >99.0% of benzylamine into N-benzylidenebenzylamine with a selectivity of 98.0% in 25 min illumination by a 10 W 445 nm light-emitting diode (LED). Its turnover frequency reaches 392 h-1, which is not only better than the homogeneous catalyst [Ru(bpy)3]Cl2 but also much superior to those achieved over most of reported heterogeneous catalysts. Moreover, it shows a wide generality for various aromatic amines, accompanied by the advantages of good recyclability and stability. The photocatalytic oxidation mechanism of amines to the corresponding imines over polyoxometalate-based hybrid compounds was fully investigated.

16.
Angew Chem Int Ed Engl ; 61(29): e202202914, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35543927

RESUMEN

Active species regulation is a key scientific issue that essentially determines the selectivity and activity of a photocatalyst. Herein, CuI -bridged tetrakis(4-ethynylphenyl)ethene aggregates (T4 EPE-Cu) with photo-regulated 1 O2 and O2 .- generation were demonstrated for selective photocatalytic aerobic oxidation. In this system, transient photovoltage combined with the density functional theory calculations confirmed that Cu-alkynyl was the main oxygen activation site. The adsorbed O2 tends to produce O2 .- because of the potential well effect of Cu-alkynyl under high-energy light excitation. But under low-energy light, O2 tends to produce 1 O2 via resonance energy transfer with Cu-alkynyl. For α-terpinene oxidation, the ratios of 1 O2 products to O2 .- products can be controlled from 1.3 (380 nm) to 10.7 (600 nm). Furthermore, T4 EPE-Cu exhibited ultrahigh photocatalytic performance for Glaser coupling and benzylamine oxidation, with a conversion and selectivity of over 99 %.

17.
Inorg Chem ; 61(18): 6910-6918, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35473356

RESUMEN

Four polyoxometalate (POM)-based organic-inorganic hybrid compounds, namely, (H2bimb)6H8[((Mn(H2O)3(µ-bimb))0.5(Mn(H2O)4)(Mn(H2O)5)0.5(AgP5W30O110))2]·29H2O (1), [(Cu(Hbimb)(H2O)2(µ-bimb)Cu(Hbimb)(H2O))(Cu(H2O)2(µ-bimb)Cu(H2O)3)((Cu(H2O)2)0.5(µ-bimb)(Cu(H2O)3)0.5)H2(AgP5W30O110)]·12.5H2O (2), (H2bimb)2H[(Zn(Hbimb)(H2O)4(Zn(Hbimb)(H2O)2)0.5)2(AgP5W30O110)]·12H2O (3), and (H2bimb)3H2[(Ag(H2O)2)0.5(Ag(Hbimb)Ag(Hbimb)(µ-bimb)Ag)(Ag(H2O)2)0.5(AgP5W30O110)]·7H2O (4) (bimb = 1,4-bis(1H-imidazol-1-yl)benzene), were hydrothermally synthesized using a silver-centered Preyssler-type POM K14[AgP5W30O110]·18H2O (abbreviated as K-{AgP5W30}) as a precursor. In 1-4, {AgP5W30} clusters integrating the merits of Ag+ and {P5W30} units are modified by different transition metal (TM)-organic fragments to extend the structures into three-dimensional frameworks. As nonenzymatic electrochemical sensor materials, 1-4 show good electrocatalytic activity, high sensitivity, and a low detection limit for detecting hydrogen peroxide (H2O2); 4 possesses the highest sensitivity of 195.47 µA·mM-1·cm-2 for H2O2 detection. Most importantly, the average level of H2O2 detection of these {AgP5W30}-based materials outperforms that of Na-centered Preyssler-type {NaP5W30} and most Keggin-type POM-based materials. The performances of such {AgP5W30} materials mainly stem from the unique advantage of high-negatively charged {AgP5W30} clusters together with the good synergistic effect between {AgP5W30} and TMs. This work expands on the research of high-efficiency POM-based nonenzymatic electrochemical H2O2 sensors using Ag-containing POMs with high negative charges, which is also of great theoretical and practical significance to carry out health monitoring and environmental analysis.


Asunto(s)
Peróxido de Hidrógeno , Plata , Aniones , Peróxido de Hidrógeno/química , Polielectrolitos , Plata/química
18.
ACS Appl Mater Interfaces ; 13(20): 23866-23876, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33998224

RESUMEN

Constructing bulk defects and doping are feasible ways to essentially narrow the band gap and improve the light absorption of photocatalysts. Herein, inspired by bread foaming, the foaming agent azoformamide or azodicarbonamide (AC) was introduced during the thermal polymerization of urea. In the polymerization process, a large number of bubbles produced by AC decomposition seriously interfered with the polymerization of urea, resulting in the breaking of the hydrogen bonds and van der Waals interaction in carbon nitride, distortion of its structure, and partial oxidation, thus forming a series of porous carbon nitrides U/ACx (x is the ratio of AC to urea; where x = 0.25, 0.5, and 1) with bulk N defects and O doping. Its band gap was reduced to 1.91 eV and the absorption band edge was greatly extended to 650 nm. The optimal U/AC0.5 exhibits the highest visible light photocatalytic hydrogen production rate of about 44.7 µmol·h-1 (10 mg catalysts) and shows superior photocatalytic performance for the oxidation of diphenylhydrazine to azobenzene, with conversion and selectivity of almost 100%, and is one of the most active defective carbon nitrides, especially under long-wavelength (λ ≥ 550 nm) light irradiation. It paves the way for the design of highly efficient and wide-spectral-response photocatalysts.

19.
Mol Med Rep ; 23(5)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33760129

RESUMEN

Inflammation, which causes injury to vascular endothelial cells, is one of the major factors associated with atherosclerosis (AS); therefore, inhibition of endothelial inflammation is a key step toward preventing AS. The present study aimed to investigate the effects of bakkenolide­IIIa (Bak­IIIa), an important active component of bakkenolides, on endothelial inflammation, as well as the mechanisms underlying such effects. Lipopolysaccharide (LPS)­damaged human umbilical vein endothelial cells (HUVECs) were treated with Bak­IIIa. The results of the MTT assay and enzyme­linked immunosorbent assay indicated that Bak­IIIa significantly alleviated survival inhibition, and decreased the levels of LPS­induced TNF­α, interleukin (IL)­1ß, IL­8, and IL­6. Furthermore, long noncoding RNA (lncRNA) microarray analyses revealed 70 differentially expressed lncRNAs (DELs) in LPS­damaged HUVECs treated with Bak­IIIa. lncRNA target prediction results revealed that 44 DELs had 52 cis­targets, whereas 12 DELs covered 386 trans­targets. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses of the trans­targets indicated that three GO terms were associated with inflammation. Therefore, 17 targets involved in these GO terms and six relevant DELs were screened out. Validation via reverse transcription­quantitative PCR indicated that the fold change of NR_015451 (LINC00294) was the highest among the six candidates and that overexpression of LINC00294 significantly alleviated LPS­induced survival inhibition and inflammatory damage in HUVECs. In conclusion, Bak­IIIa ameliorated LPS­induced inflammatory damage in HUVECs by upregulating LINC00294. Thus, Bak­IIIa exhibited potential for preventing vascular inflammation.


Asunto(s)
Inflamación/tratamiento farmacológico , ARN Largo no Codificante/genética , Sesquiterpenos/farmacología , Factor de Necrosis Tumoral alfa/genética , Apoptosis/efectos de los fármacos , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/patología , Regulación de la Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/patología , Interleucina-1beta/genética , Interleucina-6/genética , Interleucina-8/genética , Lipopolisacáridos/toxicidad
20.
Angew Chem Int Ed Engl ; 60(21): 11910-11918, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-33605019

RESUMEN

Efficient coupling solar energy conversion and N2 fixation by photocatalysis has been shown promising potentials. However, the unsatisfied yield rate of NH3 curbs its forward application. Defective typical perovskite, BaTiO3 , shows remarkable activity under an applied magnetic field for photocatalytic N2 fixation with an NH3 yield rate exceeding 1.93 mg L-1 h-1 . Through steered surface spin states and oxygen vacancies, the electromagnetic synergistic effect between the internal electric field and an external magnetic field is stimulated. X-ray absorption spectroscopy and density functional theory calculations reveal the regulation of electronic and magnetic properties through manipulation of oxygen vacancies and inducement of Lorentz force and spin selectivity effect. The electromagnetic effect suppresses the recombination of photoexcited carriers in semiconducting nanomaterials, which acts synergistically to promote N2 adsorption and activation while facilitating fast charge separation under UV-vis irradiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...