Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Int ; 182: 108333, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37995389

RESUMEN

Large industrial estates for electrical and electronic waste (e-waste) mechanical dismantling and recycling are gradually replacing outmoded small factories and intensive domestic workshops for e-waste manual and chemical dismantling. However, the air pollution and health risks of persistent organic pollutants during the modern mechanical processing of e-waste, especially obsolete electrical equipment, still remain unclear. Here, unexpectedly high levels (409.3 ng/m3) and health risks of airborne polychlorinated biphenyls (PCBs) were found during the mechanical processing of obsolete electric equipment or parts in a large integrated dismantling industrial estate, which is comparable to or a dozen times higher than those reported during chemical processing. In contrast, the levels (936.0 pg/m3) and health risks of particulate polybrominated diphenyl ethers (PBDEs) were all lower than those of previous studies. PCB emissions (44.9-3300.5 ng/m3) varied significantly across six mechanical dismantling places specifically treating waste motors, electrical appliances, hardware, transformers, and metals, respectively. The high PCB content and mass processing number of obsolete electrical equipment probably result in the highest PCB emissions from the mechanical dismantling of obsolete motors, followed by waste electrical appliances and metals. The PCB non-cancer and cancer risks associated with inhalation and dermal exposure in different mechanical dismantling places were all above the given potential risk limits. In particular, the health risks of dismantling obsolete motor exceeded the definite risk levels. Little difference in PCB emissions and health risks between working and non-working time suggested the importance of PCB volatilization from most e-waste. Such high PCB emissions and health risks of PCBs undoubtedly posed a severe threat to frontline workers, but fortunately, they decreased significantly with the increasing distance from the industrial estate. We highlight that PCB emissions and associated health risks from obsolete electrical equipment with high PCB content during mechanical dismantling activities should be of great concern.


Asunto(s)
Residuos Electrónicos , Bifenilos Policlorados , Humanos , Bifenilos Policlorados/análisis , Residuos Electrónicos/efectos adversos , Residuos Electrónicos/análisis , Éteres Difenilos Halogenados/análisis , Reciclaje , Polvo/análisis , Monitoreo del Ambiente , China
2.
Adv Mater ; 35(20): e2211632, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36868183

RESUMEN

Molecular fluorophores with the second near-infrared (NIR-II) emission hold great potential for deep-tissue bioimaging owing to their excellent biocompatibility and high resolution. Recently, J-aggregates are used to construct long-wavelength NIR-II emitters as their optical bands show remarkable red shifts upon forming water-dispersible nano-aggregates. However, their wide applications in the NIR-II fluorescence imaging are impeded by the limited varieties of J-type backbone and serious fluorescence quenching. Herein, a bright benzo[c]thiophene (BT) J-aggregate fluorophore (BT6) with anti-quenching effect is reported for highly efficient NIR-II bioimaging and phototheranostics. The BT fluorophores are manipulated to have Stokes shift over 400 nm and aggregation-induced emission (AIE) property for conquering the self-quenching issue of the J-type fluorophores. Upon forming BT6 assemblies in an aqueous environment, the absorption over 800 nm and NIR-II emission over 1000 nm are boosted for more than 41 and 26 folds, respectively. In vivo visualization of the whole-body blood vessel and imaging-guided phototherapy results verify that BT6 NPs are excellent agent for NIR-II fluorescence imaging and cancer phototheranostics. This work develops a strategy to construct bright NIR-II J-aggregates with precisely manipulated anti-quenching properties for highly efficient biomedical applications.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Colorantes Fluorescentes/farmacología , Fototerapia , Imagen Óptica/métodos
3.
Environ Pollut ; 320: 121060, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36641067

RESUMEN

Dyes adsorption to biochar via hydrogen bonding, and π-π interaction alone have attracted much research attention, however, their synergism in adsorption mechanisms remains largely unnoticed. The synergistic effects of the hydrogen bonding and π-π interaction might improve the adsorption capacity and need more understanding to prepare high-capacity biochar. In this work, we evaluated the adsorption of various dyes on biochar prepared via the activation of potassium bicarbonate and urea (named BC-KN) to explore their synergistic effects. Batch experiments indicated the BC-KN showed a high adsorption capacity to rhodamine B at 4839.0 mg/g, azure B at 4477.7 mg/g, and methylene blue at 2223.0 mg/g, respectively. The mechanism of such significant adsorption was investigated by their comparative experiments, characterizations, and computational analyses. The computational analyses suggested that the synergism of the hydrogen bonding and π-π interaction improves the adsorption energies of BC-KN/RhB system from -10.35 kcal/mol to -20.49 kcal/mol. It can be concluded that the hydrogen bonding and π-π interaction can synergize to significantly improve the adsorption by increasing the π-electron density and shortening the distance of aromatic rings, thus dyes with H-donor show significantly better adsorption capacities. The insight of hydrogen bonding being the governing factor in the synergistic system will help produce high-capacity biochar in removing aromatic dyes and suggest a sustainable technology for the efficient decolorization of dye effluent to minimize its damage to the health and environment.


Asunto(s)
Contaminantes Químicos del Agua , Zea mays , Adsorción , Agua , Enlace de Hidrógeno , Carbón Orgánico , Colorantes , Cinética
4.
Angew Chem Int Ed Engl ; 62(10): e202215226, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36593222

RESUMEN

Rationally tuning the emission position and narrowing the full width at half-maximum (FWHM) of an emitter is of great importance for many applications. By synergistically improving rigidity, strengthening the resonant strength, inhibiting molecular bending and rocking, and destabilizing the HOMO energy level, a deep-blue emitter (CZ2CO) with a peak wavelength of 440 nm and an ultranarrow spectral FWHM of 16 nm (0.10 eV) was developed via intramolecular cyclization in a carbonyl/N resonant core (QAO). The dominant υ0-0 transition character of CZ2CO gives a Commission Internationale de I'Éclairage coordinates (CIE) of (0.144, 0.042), nicely complying with the BT.2020 standard. Moreover, a hyper-fluorescent device based on CZ2CO shows a high maximum external quantum efficiency (EQEmax ) of 25.6 % and maintains an EQE of 22.4 % at a practical brightness of 1000 cd m-2 .

5.
Angew Chem Int Ed Engl ; 62(6): e202214281, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36314420

RESUMEN

The development of photoinduced luminescent radicals with dynamic emission color is still challenging. Herein we report a novel molecular radical system (TBIQ) that shows photo-controllable luminescence, leading to a wide range of ratiometric color changes via light excitation. The conjugated skeleton of TBIQ is decorated with steric-demanding tertiary butyl groups that enable appropriate intermolecular interaction to make dynamic intermolecular coupling possible for controllable behaviors. We reveal that the helicenic pseudo-planar conformation of TBIQ experiences a planarization process after light excitation, leading to more compactly stacked supermolecules and thus generating radicals via intermolecular charge transfer. The photo-controllable luminescent radical system is employed for a high-level information encryption application. This study may offer unique insight into molecular dynamic motion for optical manufacturing and broaden the scope of smart-responsive materials for advanced applications.

6.
ACS Appl Mater Interfaces ; 14(47): 53120-53128, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36379027

RESUMEN

Simultaneously realizing improved carrier mobility and good photoluminescence (PL) efficiency in red thermally activated delayed-fluorescence (TADF) emitters remains challenging but important. Herein, two isomeric orange-red TADF emitters, oPDM and pPDM, with the same basic donor-acceptor backbone but a pyrimidine (Pm) attachment at different positions are designed and synthesized. The two emitters show similarly good PL properties, including narrow singlet-triplet energy offsets (0.11 and 0.15 eV) and high photoluminescence quantum yields (ca. 100 and 88%) in doped films. An orange-red organic light-emitting diode (OLED) employing oPDM as an emitter achieves an almost twice as high maximum external quantum efficiency (28.2%) compared with that of a pPDM-based OLED. More balanced carrier-transporting properties are responsible for their contrasting device performances, and the position effect of the Pm substituent leads to significantly distinct molecular packing behaviors in the aggregate states and different carrier mobilities.

7.
Adv Mater ; 34(38): e2204749, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35862231

RESUMEN

Precise recognition of near-infrared (NIR) signals holds great prospects in optical communication, remote sensing, information security, and anti-counterfeiting. For these applications, filters with good NIR transparency are typically essential components. Currently, such NIR transparent filters are dominated by inorganic materials such as chalcogenide glasses. There are, so far, only a handful of organic molecules with suitable optical properties due to the rarity of organic materials with good NIR transparency and relatively flat absorption over the UV-visible region. Here, it is found that the library of NIR-transparent organic materials can be expanded by forming a charge-transfer complex (CTC) between a donor (D) and an acceptor (A) molecule that are commercially available. Via regulating the DA interaction, the CTC filter shows tunable absorption from the visible to NIR region with a relatively high penetration of NIR radiation (≈80%). The CTC filter can successfully highlight NIR information hidden in a complex environment and allow reading of NIR security images for advanced anti-counterfeiting. Moreover, the CTC filter can be used for viewing protected NIR information with good resolution, and thus provide a convenient tool for different security applications using NIR-encoded information.

8.
Environ Sci Technol ; 56(12): 7578-7587, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35650515

RESUMEN

Humic-like substances (HULIS) are macromolecular complex groups in water-soluble organic compounds (WSOC). pH is a crucial factor that influences the chemical transformations of HULIS in atmospheric particles, but this has been rarely investigated, especially under varying pH conditions. This study attempted to unveil the chemical transformation mechanisms of HULIS under a range of pH conditions using optical methods. The pH-dependent light absorption and fluorescence properties of HULIS were comprehensively analyzed; the acidity coefficient (pKa) of HULIS in relation to chemical structures was determined, and the hypothetical chemical transformation mechanisms of HULIS with increasing pH were analyzed by optical characterizations. The results suggested that pH greatly impacted the light absorption and fluorescence efficiencies of HULIS in both winter and summer seasons, and pKa was an important inflection point. The pKa of HULIS ranged from 3.5 to 8.0 in winter and 6.4 to 10.0 in summer. The acidic/basic groups were identified as -OH or -NH2 substituted quinolines, carboxylic aromatics, and pyridines. The pH-sensitive species accounted for about 6% and 21% of HULIS-C (carbon concentrations of HULIS) in winter and summer, respectively. The varying optical spectra with increasing pH might result from charge transfer or complex reactions with HULIS deprotonation.


Asunto(s)
Contaminantes Atmosféricos , Sustancias Húmicas , Aerosoles/química , Contaminantes Atmosféricos/análisis , Cognición , Monitoreo del Ambiente/métodos , Sustancias Húmicas/análisis , Concentración de Iones de Hidrógeno , Material Particulado/análisis
9.
Adv Mater ; 34(18): e2200537, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35236007

RESUMEN

To achieve high-efficiency deep-blue electroluminescence satisfying Rec.2020 standard blue gamut, two thermally activated delayed fluorescent (TADF) emitters are developed: 5-(2,12-di-tert-butyl-5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracen-7-yl)-10,10-diphenyl-5,10-dihydrodibenzo[b,e][1,4]azasiline (TDBA-PAS) and 10-(2,12-di-tert-butyl-5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracen-7-yl)-9,9-diphenyl-9,10-dihydroacridine (TDBA-DPAC). Inheriting from their parented organoboron multi-resonance core, both emitters show very promising deep-blue emissions with relatively narrow full width at half-maximum (FWHM, ≈50 nm in solution), high photoluminescence quantum yield (up to 92.3%), and short emission lifetime (≤2.49 µs) with fast reverse intersystem crossing (>106 s-1 ) in doped films. More importantly, replacing the spiro-centered sp3 C atom (TDBA-DPAC) with the larger-radius sp3 Si atom (TDBA-PAS), enhanced conformational heterogeneities in bulky-group-shielded TADF molecules are observed in solution, doped film, and device. Consequently, OLEDs based on TDBA-PAS retain high maximum external quantum efficiencies ≈20% with suppressed efficiency roll-off and color index close to Rec.2020 blue gamut over a wide doping range of 10-50 wt%. This study highlights a new strategy to restrain spectral broadening and redshifting and efficiency roll-off in the design of deep-blue TADF emitters.

10.
J Hazard Mater ; 424(Pt C): 127688, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34775306

RESUMEN

Water-soluble organic compounds (WSOC) have a significant impact on aerosol radiative forcing and climate change, and there is considerable uncertainty in predicting and mitigating their climate and environmental effects. Here, the effects of pH on the light absorption properties of WSOC in particulate matter from different typical emission sources and ambient aerosols were systematically investigated using UV-vis spectrophotometer. pH (2-10) had an important impact on the light absorption properties of WSOC. The absorption, aromaticity, and the light absorption capacity of WSOC increased significantly with increasing pH for all samples. The difference absorbance spectra (∆absorbance) showed that the change of light absorption properties with pH was related to the deprotonate of carboxyl and phenolic groups resonating with aromatic and conjugated systems, with the most likely structures being carboxylic acids and phenols. Coal combustion and summer samples exhibited much higher susceptibility of light absorption properties to pH variation (increased by 27.0% and 65.9% relative to the pH 2 level, respectively). Absorption indices of almost all samples were significantly correlated with pH, indicating that the light absorption properties of WSOC may be quantitatively related to pH. The pH-dependent light absorption properties may have profound implications for evaluating the climate impacts of aerosol WSOC such as radiative forcing.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Carbono/análisis , Monitoreo del Ambiente , Concentración de Iones de Hidrógeno , Material Particulado/análisis , Agua
11.
Chemistry ; 28(4): e202103202, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34811829

RESUMEN

Upon fusing the pyrazinyl pyrazole entity in giving pyrazolo[3,4-f]quinoxaline chelate, the corresponding Os(II) based NIR emitter exhibited "invisible" and efficient electroluminescence with a peak maximum at 811 nm. A maximum external quantum efficiency of 0.97 % and a suppressed efficiency roll-off till a current density of 300 mA cm-2 was also exhibited.

12.
ACS Appl Mater Interfaces ; 13(41): 49066-49075, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34613700

RESUMEN

Enhancing the reverse intersystem crossing (RISC) process of thermally activated delayed fluorescent (TADF) emitters is an effective approach to realize efficient organic light-emitting diodes (OLEDs) with low efficiency roll-off. In this work, we designed two novel TADF emitters, SAT-DAC and SATX-DAC, via a spiro architecture. Efficient maximum external quantum efficiencies (EQEs) of 22.6 and 20.9% with reduced efficiency roll-off (EQEs of 17.9 and 17.0% at 1000 cd m-2) were achieved via a "two-RISC-channel" strategy. X-ray diffraction shows close donor (D)/acceptor (A) spacing and suitable D/A orientation in crystals of the two emitters favoring both intra- and intermolecular through-space charge transfer (TSCT) processes. Transient photoluminescence decay measurements show that both emitters have two RISC channels leading to kISCT exceeding 106 s-1. These results suggest that the "two-RISC-channel" design can be a novel approach for enhancing performance of TADF emitters, in particular at high excitation densities.

13.
ACS Appl Mater Interfaces ; 13(37): 44991-45000, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34492178

RESUMEN

Perovskite light-emitting diodes (LEDs) show great potential for next-generation lighting and display technology. Despite intensive studies on single-color devices, there are few reports on perovskite-based white LEDs (Pe-WLEDs). Here, an efficient Pe-WLED based on a blue perovskite and an orange phosphorescent emitter is reported for the first time. It is found that using a simple perovskite/phosphor bilayer emitting structure, there is inefficient energy transfer from the blue perovskite to the orange phosphor, leading to low efficiency and a significant color shift with driving voltage. We address this issue by introducing a quantum-well-like charge-confinement structure for enhancing carrier trapping and thus exciton formation in the phosphorescent emitter. As a result, a high external quantum efficiency of 10.81% is obtained. More interestingly, by tuning the dopant concentration of the phosphorescent emitter using this simple device structure, we can controllably get Pe-WLEDs with very stable white light for display applications or tunable color from warm white to daylight for lighting applications.

14.
J Environ Sci (China) ; 107: 26-37, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34412785

RESUMEN

Characteristics of atmospheric VOCs (volatile organic compounds) have been extensively studied in megacities in China, however, they are scarcely investigated in medium/small-sized cities in North China Plain (NCP). A comprehensive research on possible sources of VOCs was conducted in a medium-sized city of NCP, from May to September 2019. A total of 143 canister samples of 8 sites in Xuchang city were collected, and 57 VOC species were detected. The average VOC concentrations were 42.6 ± 31.6 µg/m3, with 53.7 ± 31.0 µg/m3 and 32.1 ± 27. 8 µg/m3, in the morning and afternoon, respectively. Alkenes and aromatics contributed 80% of the total ozone formation potential (OFP). Aromatics accounted for more than 95% of secondary organic aerosol potential (SOAP). VOCs were dominated by the local emission with significant transport from the southeast direction. PMF analysis extracted 6 sources, which were combustion (33.1%), LPG usage (19.3%), vehicular exhaust & fuel evaporation (15.8%), solvent usage (15.2%), industrial (9.11%) and biogenic (7.51%), respectively and they contributed 33.4%, 17.6%, 12.9%, 18.6%, 9.28% and 8.22% to the OFP, respectively. Combustion and LPG usage were the dominant VOC sources; and combustion, solvent usage and LPG usage were the main sources of OFP in Xuchang city, which were different to megacities in China with a high contribution from vehicular exhaust, solvent usage and industry, suggesting specific control strategies on VOCs need to be implemented in medium-sized city such as Xuchang city.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , China , Ciudades , Monitoreo del Ambiente , Políticas
15.
Sci Total Environ ; 792: 148376, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34147809

RESUMEN

The fragile aquatic ecosystem on the Tibetan Plateau is severely threatened by human activities and climate change. Dissolved organic matter (DOM) is a vital indicator of surface water quality; however, its comprehensive molecular analysis is challenged due to its low concentration (total organic carbon less than 0.5 mg/L) in alpine areas. This study proposes the fluorescence excitation-emission matrix (FEEM) to fingerprint DOM in a typical headstream in the Namco basin, one of the largest lake regions in Tibet. We found that the FEEM can sensitively detect low-concentration pollution traces and the variation of DOM along the flow from the ice sheet, through the wetland, eventually to the estuary of the lake. The fluorescence intensity indices for biodegradable carbon (fT/C) and humification (HIXem) responded drastically along the flow. Fluorescence regional integrals (FRIs) clearly reflected the overall increase of protein-like substances and decrease of humus-like substances along the flow, whereas this tendency was reversed when passing through the wetland. The FRIs-derived secondary parameters (HPP, HMP, WLP and SSP) further sensed likely variations in hydrophobicity, humification degree, excited-state fluorophore energy and Stokes shift. Parallel factor analysis (PARAFAC) and two-dimensional correlation spectroscopy (2DCOS) of the FEEM signals witnessed the trade-off among tyrosine-like organics (C1 peak), tryptophan-like byproducts (C2 peak) and humus-like remains (C3 peak) along the flow. The C1 component can be traced back to the vicinity of the ice sheet exit, presumably due to human and animal activities. The wetland can absorb or convert part of the C1 component into C2 or C3 products, demonstrating the function of regulating water quality and buffering environmental impacts. The spectroscopic indicators evaluated in this study may provide tools for diagnosing early traces of water pollution and ecological instability in alpine areas.


Asunto(s)
Ecosistema , Calidad del Agua , Análisis Factorial , Humanos , Sustancias Húmicas/análisis , Lagos , Espectrometría de Fluorescencia , Tibet
16.
Molecules ; 26(9)2021 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-33922916

RESUMEN

A novel core-shell magnetic Prussian blue-coated Fe3O4 composites (Fe3O4@PB) were designed and synthesized by in-situ replication and controlled etching of iron oxide (Fe3O4) to eliminate Cd (II) from micro-polluted water. The core-shell structure was confirmed by TEM, and the composites were characterized by XRD and FTIR. The pore diameter distribution from BET measurement revealed the micropore-dominated structure of Fe3O4@PB. The effects of adsorbents dosage, pH, and co-existing ions were investigated. Batch results revealed that the Cd (II) adsorption was very fast initially and reached equilibrium after 4 h. A pH of 6 was favorable for Cd (II) adsorption on Fe3O4@PB. The adsorption rate reached 98.78% at an initial Cd (II) concentration of 100 µg/L. The adsorption kinetics indicated that the pseudo-first-order and Elovich models could best describe the Cd (II) adsorption onto Fe3O4@PB, indicating that the sorption of Cd (II) ions on the binding sites of Fe3O4@PB was the main rate-limiting step of adsorption. The adsorption isotherm well fitted the Freundlich model with a maximum capacity of 9.25 mg·g-1 of Cd (II). The adsorption of Cd (II) on the Fe3O4@PB was affected by co-existing ions, including Cu (II), Ni (II), and Zn (II), due to the competitive effect of the co-adsorption of Cd (II) with other co-existing ions.

17.
Chem Commun (Camb) ; 57(40): 4902-4905, 2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-33870972

RESUMEN

A bromine-substituted thermally activated delayed fluorescent (TADF) molecule AQCzBr2 is designed with both small singlet-triplet splitting (ΔEST) and increased spin-orbit coupling (SOC) to boost intersystem crossing (ISC) for singlet oxygen generation. AQCzBr2 nanoparticles (NPs) demonstrate high productivity of singlet oxygen generation (ΦΔ = 0.91) which allows highly efficient photodynamic therapy toward cancer cells.

18.
Angew Chem Int Ed Engl ; 60(21): 11758-11762, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33724623

RESUMEN

Extensive recent efforts have been put on the design of high-performance organic near-infrared (NIR) photothermal agents (PTAs), especially over NIR-II bio-window (1000-1350 nm). So far, the development is mainly limited by the rarity of molecules with good NIR-II response. Here, we report organic nanoparticles of intermolecular charge-transfer complexes (CTCs) with easily programmable optical absorption. By employing different common donor and acceptor molecules to form CTC nanoparticles (CT NPs), absorption peaks of CT NPs can be controllably tuned from the NIR-I to NIR-II region. Notably, CT NPs formed with perylene and TCNQ have a considerably red-shifted absorption peak at 1040 nm and achieves a good photothermal conversion efficiency of 42 % under 1064 nm excitation. These nanoparticles were used for antibacterial application with effective activity towards both Gram-negative and Gram-positive bacteria. This work opens a new avenue into the development of efficient PTAs.


Asunto(s)
Antibacterianos/farmacología , Nanopartículas/química , Antibacterianos/química , Antibacterianos/efectos de la radiación , Derivados del Benceno/química , Derivados del Benceno/farmacología , Derivados del Benceno/efectos de la radiación , Escherichia coli/efectos de los fármacos , Rayos Infrarrojos , Pruebas de Sensibilidad Microbiana , Nanopartículas/efectos de la radiación , Nitrilos/química , Nitrilos/farmacología , Nitrilos/efectos de la radiación , Perileno/química , Perileno/farmacología , Perileno/efectos de la radiación , Compuestos Policíclicos/química , Compuestos Policíclicos/farmacología , Compuestos Policíclicos/efectos de la radiación , Solubilidad , Staphylococcus aureus/efectos de los fármacos , Electricidad Estática/efectos adversos , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/farmacología , Compuestos de Sulfhidrilo/efectos de la radiación , Agua/química
19.
ACS Appl Mater Interfaces ; 13(14): 15983-15991, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33788531

RESUMEN

Organic small molecule-based phototheranostics hold great promise for clinical translation by virtue of their distinct chemical structure, easy reproducibility, and high purity. However, reported molecular agents typically have relatively low optical absorbances, particularly over the near-infrared (NIR) region, and this limits their phototheranostic performance. Herein, we first exploit a diradicaloid molecular structure for enhancing NIR absorption to facilitate efficient photoacoustic imaging (PAI)-guided photothermal therapy (PTT). The donor-acceptor interaction in the diradicaloid molecule (DRM) leads to strong charge transfer resulting on obvious diradical characteristics, which is beneficial for NIR absorption. The DRM possesses excellent light-harvesting ability, with a mass extinction coefficient of ∼220 L g-1 cm-1, which is much higher than those (∼5-100 L g-1 cm-1) of typical organic molecules. After assembling into nanoparticles, they show good water dispersibility, good photostability, and impressive performance for PAI-guided PTT in vitro and in vivo. The impressive in vitro and in vivo performances show that developing small molecules with diradicaloid structures can be an effective approach for enhancing NIR harvesting capability for biomedical applications.


Asunto(s)
Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Terapia Fototérmica , Espectroscopía Infrarroja Corta/métodos , Nanomedicina Teranóstica/métodos , Células 3T3 , Células A549 , Animales , Materiales Biocompatibles , Humanos , Ratones , Nanopartículas
20.
Sci Total Environ ; 767: 145261, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33550065

RESUMEN

Taking Cu and Zn as examples, the pH-dependent interactions between atmospheric heavy metals (AHMs) and water-soluble organic compounds (WSOCs) in PM2.5 were analyzed by a combination of UV-vis absorption, Fourier transform infrared (FTIR) spectroscopy and excitation-emission matrix (EEM) fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC). We found metal-H ion exchange, complexation and electrostatic adsorption might occur between AHMs and WSOCs, and were generally enhanced with the increase of pH. Furthermore, these interactions were strengthened with the stepwise addition of [Cu2+] (from 0 to 500 µmol·L-1), but had a relatively slight change with the stepwise addition of [Zn2+] (from 0 to 500 µmol·L-1) generally. This indicated that the above interactions depended on the types and the concentrations of AHMs. Carboxyl, hydroxyl, carbonyl and aromatic structures of WSOCs were the major binding sites with AHMs. Humic acid-like substances were the dominant components of WSOCs binding with AHMs. The ratios of the apparent fluorescence quantum yields of the low and the high conjugation fractions of WSOCs (QExL/H) declined by more than 28% as adding [Cu2+], indicating the formers had more strong complexing capacity with AHMs. AHMs might significantly impact the light absorption capacity and the wavelength dependence of WSOCs. The humification index (HIXem) declined more than 15% as adding [Cu2+] at pH 5.6 and 7.5, indicating AHMs might weaken the oxidation capacity of WSOCs. These results implied the interactions between AHMs and WSOCs might play a profound role in atmospheric environment, human health, and global climate change.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...