Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(41): 15617-15626, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37802504

RESUMEN

Wastewater treatment plants (WWTPs) are regarded as the main sources of estrogens that reach the aquatic environment. Hence, continuous monitoring of potential estrogenic-active compounds by a biosensor is an appealing approach. However, existing biosensors cannot simultaneously distinguish and quantify estrogenic agonists and antagonists. To overcome the challenge, we developed an estrogen receptor-based biosensor that selectively screened estrogenic agonists and antagonists by introducing rationally designed agonist/antagonist conformation-specific reporters. The double functional conformation-specific reporters consist of a Cy5.5-labeled streptavidin moiety and a peptide moiety, serving as signal recognition and signal transduction elements. In addition, the conformation recognition mechanism was further validated at the molecular level through molecular docking. Based on the two-step "turn-off" strategy, the biosensor exhibited remarkable sensitivity, detecting 17ß-estradiol-binding activity equivalent (E2-BAE) at 7 ng/L and 4-hydroxytamoxifen-binding activity equivalent (4-OHT-BAE) at 91 ng/L. To validate its practicality, the biosensor was employed in a case study involving wastewater samples from two full-scale WWTPs across different treatment stages to map their estrogenic agonist and antagonist binding activities. Comparison with the yeast two-hybrid bioassay showed a strong liner relationship (r2 = 0.991, p < 0.0001), indicating the excellent accuracy and reliability of this technology in real applications.


Asunto(s)
Técnicas Biosensibles , Contaminantes Químicos del Agua , Aguas Residuales , Simulación del Acoplamiento Molecular , Reproducibilidad de los Resultados , Estrógenos , Estrona , Contaminantes Químicos del Agua/análisis
2.
Environ Sci Technol ; 57(44): 16823-16833, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37874250

RESUMEN

Haloacetaldehydes (HALs) represent the third-largest category of disinfection byproducts (DBPs) in drinking water in terms of weight. As a subset of unregulated DBPs, only a few HALs have undergone assessment, yielding limited information regarding their genotoxicity mechanisms. Herein, we developed a simplified yeast-based toxicogenomics assay to evaluate the genotoxicity of five specific HALs. This assay recorded the protein expression profiles of eight Saccharomyces cerevisiae strains fused with green fluorescent protein, including all known DNA damage and repair pathways. High-resolution real-time pathway activation data and protein expression profiles in conjunction with clustering analysis revealed that the five HALs induced various DNA damage and repair pathways. Among these, chloroacetaldehyde and trichloroacetaldehyde were found to be positively associated with genotoxicity, while dichloroacetaldehyde, bromoacetaldehyde, and tribromoacetaldehyde displayed negative associations. The protein effect level index, which are molecular end points derived from a toxicogenomics assay, exhibited a statistically significant positive correlation with the results of traditional genotoxicity assays, such as the comet assay (rp = 0.830 and p < 0.001) and SOS/umu assay (rp = 0.786 and p = 0.004). This yeast-based toxicogenomics assay, which employs a minimal set of gene biomarkers, can be used for mechanistic genotoxicity screening and assessment of HALs and other chemical compounds. These results contribute to bridging the knowledge gap regarding the molecular mechanisms underlying the genotoxicity of HALs and enable the categorization of HALs based on their distinct DNA damage and repair mechanisms.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Desinfección/métodos , Saccharomyces cerevisiae/genética , Toxicogenética/métodos , Purificación del Agua/métodos , Daño del ADN , Contaminantes Químicos del Agua/análisis , Desinfectantes/análisis , Desinfectantes/química
3.
Anal Chem ; 95(20): 8036-8044, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37158541

RESUMEN

Developing a sensitive and reliable method for the screening of various endocrine-disrupting chemicals (EDCs) is in high demand and yet remains a significant challenge. Herein, we developed a CdSe/ZnS QDs-based nuclear receptor fluorescence probe (QDs-NRFP)-mediated biosensor for the screening of retinoic acid (RA)-active chemicals (a class of EDCs). The QDs-NRFP can be prepared on the spot via an antigen-antibody immunobinding interaction between the GST tag of the human retinoic acid receptor ß ligand-binding domain (GST-hRARß-LBD) and the CdSe/ZnS QDs-labeled anti-GST tag antibody. It can not only maintain the high binding activity of GST-hRARß-LBD but also improve the sensitivity due to the high quantum yield of CdSe/ZnS QDs. Based on the indirect competition bioassay, the developed biosensor showed a detection limit of 1.8 ng/L all-trans-retinoic acid binding activity equivalent (atRA-BAE) with a linear range of 7.5-1183.6 ng/L. Compared with many cell-dependent in vitro assays, the QDs-NRFP-mediated biosensor is cell-free and unaffected by the cytotoxic substances in matrices and exhibited obvious superiority in detection time (within 40 min) and accuracy. As a case study, the biosensor was applied to detect RA binding activities in various sample matrices obtained from a wastewater treatment plant (WWTP) and physiological samples and showed satisfactory accuracy and reliability. The developed QDs-NRFP-mediated biosensor is expected to be capable of screening various EDCs with universality based on different nuclear receptor signaling pathways, which will substantially accelerate the assessment of global EDCs.


Asunto(s)
Técnicas Biosensibles , Disruptores Endocrinos , Puntos Cuánticos , Compuestos de Selenio , Humanos , Puntos Cuánticos/química , Reproducibilidad de los Resultados , Compuestos de Zinc/química , Sulfuros/química , Técnicas Biosensibles/métodos , Compuestos de Selenio/química
4.
Anal Chem ; 95(22): 8687-8695, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37227693

RESUMEN

Developing an ultrasensitive and reliable device for continuous monitoring of various endocrine-disrupting chemicals (EDCs) is in high demand, yet it remains a significant challenge. Traditional label-free surface plasmon resonance (SPR) sensing relies on the interaction of the surface plasmon wave and the sensing liquid via intensity modulation, endowed with simple structure and easy-to-miniaturization, however suffering from inferior sensitivity and stability. Here, we propose a novel optical structure in which the frequency-shifted light of different polarization returned to the laser cavity to stimulate laser heterodyne feedback interferometry (LHFI), hence amplifying the reflectivity change caused by the refractive index (RI) variations on the gold-coated SPR chip surface, and the s-polarized light could be further used as a reference to compensate for the noise of the LHFI-amplified SPR system, resulting in nearly three orders of magnitude enhancement of the RI sensing resolution (5.9 × 10-8 RIU) compared to the original SPR system (2.0 × 10-5 RIU). To further boost intense signal enhancement, custom-designed gold nanorods (AuNRs), which were optimized by the finite-difference time-domain (FDTD) simulation, were used to generate localized surface plasmon resonance (LSPR). By exploiting the estrogen receptor as the recognition material, estrogenic active chemicals were detected with a 17ß-estradiol/L detection limit of 0.004 ng, which is nearly 180-fold lower than that of the system without introducing AuNRs. The developed SPR biosensor is expected to be capable of screening various EDCs with universality by using several nuclear receptors, such as the androgen receptor and thyroid receptor, and will substantially accelerate the assessment of global EDCs.


Asunto(s)
Técnicas Biosensibles , Disruptores Endocrinos , Resonancia por Plasmón de Superficie/métodos , Disruptores Endocrinos/análisis , Retroalimentación , Técnicas Biosensibles/métodos , Oro/química
5.
Environ Sci Technol ; 57(22): 8313-8322, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37199705

RESUMEN

Simple yet ultrasensitive and accurate quantification of a variety of analytical targets by virtue of a universal sensing device holds promise to revolutionize environmental monitoring, medical diagnostics, and food safety. Here, we propose a novel optical surface plasmon resonance (SPR) system in which the frequency-shifted light of different polarizations returned the laser cavity to stimulate laser heterodyne feedback interferometry (LHFI), hence amplifying the reflectivity change caused by the refractive index (RI) variations on the gold-coated SPR chip surface. In addition, the s-polarized light was further used as the reference to compensate the noise of the LHFI-amplified SPR system, resulting in nearly 3 orders of magnitude enhancement of RI resolution (5.9 × 10-8 RIU) over the original SPR system (2.0 × 10-5 RIU). By exploiting nucleic acids, antibodies, and receptors as recognition materials, a variety of micropollutants were detected with ultralow detection limits, ranging from a toxic metal ion (Hg2+, 70 ng/L) to a group of commonly occurring biotoxin (microcystins, 3.9 ng microcystin-LR/L) and a class of environmental endocrine disruptors (estrogens, 0.7 ng 17ß-estradiol/L). This sensing platform exhibits several distinct characteristics, including dual improvement of sensitivity and stability and common-path optical construction without needing optical alignment, demonstrating a promising avenue toward environmental monitoring.


Asunto(s)
Técnicas Biosensibles , Técnicas Biosensibles/métodos , Resonancia por Plasmón de Superficie/métodos , Luz , Oro
6.
J Hazard Mater ; 455: 131644, 2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37209558

RESUMEN

Two-dimensional (2D) materials attract attention from the academic community due to their excellent properties, and their wide application in sensing is expected to revolutionize environmental monitoring, medical diagnostics, and food safety. In this work, we systematically evaluate the effects of 2D materials on the Au chip surface plasmon resonance (SPR) sensor. The results reveal that 2D materials cannot improve the sensitivity of intensity-modulated SPR sensors. However, there exists an optimal real part of RI of 3.5-4.0 and optimal thickness when choosing nanomaterials for sensitivity enhancement of SPR sensors in angular modulation. In addition, the smaller the imaginary part of the nanomaterial RI, the higher the sensitivity of the proposed Au SPR sensor. The 2D material's thickness needed for the highest sensitivity decreases with increasing real part and imaginary part of the RI. As a case study, we developed a 5 nm-thickness MoS2-enhanced SPR biosensor, which exhibited a low sulfonamides (SAs) detection limit of 0.05 µg/L based on a group-targeting indirect competitive immunoassay, nearly 12-fold lower than that of the bare Au SPR system. The proposed criteria help to shed light on the 2D material-Au surface interaction, which has greatly promoted the development of novel SPR biosensing with outstanding sensitivity.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Resonancia por Plasmón de Superficie/métodos , Antibacterianos , Análisis de Secuencia por Matrices de Oligonucleótidos
7.
Sci Total Environ ; 861: 160703, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36493837

RESUMEN

In order to effectively monitor a wide variety of sulfonamides residues in the environment, group-targeting immunoassay based on the group-specific antibodies has attracted great attentions, which can realize the detection of a group of contaminants in environment as many as possible even the unrecognized ones. Indirect competitive immunoassay is generally adopted for small molecule detection however the rational design of immobilized coating antigen for improved recognition capability on the solid surface is far from enough. To cover the research gap, we proposed the design criteria of coating antigen for surface-based indirect competitive immunoassay based on the molecular docking. Taking the group-specific antibodies against sulfonamides (SA) as a proof-of-concept, a hapten with a linking arm with 3 methyl groups was selected to synthesize the coating antigen. Through surface immobilization of coating antigen, a portable biosensor for group-targeting immunoassay of sulfonamides was developed and demonstrated excellent performance with detection limits lower than 0.6 µg/L for four SA variants, and the cross-reactivities of 148-215 % relative to sulfadiazine. The recovery rates of SAs in liquid milk ranges from 87 to 97 %, which confirmed the application potential of this method in the determination of SAs. Its capability to measure total SAs in a simple and low-cost way would pave the way for a variety of application fields.


Asunto(s)
Técnicas Biosensibles , Sulfonamidas , Simulación del Acoplamiento Molecular , Anticuerpos , Sulfanilamida
8.
Environ Sci Technol ; 56(20): 14350-14360, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36129370

RESUMEN

Overcoming the limitations of traditional analytical methods and developing technologies to continuously monitor environments and produce a comprehensive picture of potential endocrine-disrupting chemicals (EDCs) has been an ongoing challenge. Herein, we developed a portable nuclear receptor (NR)-based biosensor within 90 min to perform highly sensitive analyses of a broad range of EDCs in environmental water samples. Based on the specific binding of the fluorescence-labeled NRs with their ligands, the receptors were attached to the EDC-functionalized fiber surface by competing with EDCs in the samples. The biosensor emitted fluorescence due to the evanescent wave excitation, thereby resulting in a turn-off sensing mode. The biosensor showed a detection limit of 5 ng/L E2-binding activity equivalent (E2-BAE) and 93 ng/L T3-BAE. As a case study, the biosensor was used to map the estrogenic binding activities of surface waters obtained from a rural community in the Yellow River basin in China. When the results obtained were compared with those from the traditional yeast two-hybrid bioassay, a high correlation was observed. It is anticipated that the good universality and versatility exhibited by this biosensor for various EDCs, which is achieved by using different NRs, will significantly promote the continuous assessment of global EDCs.


Asunto(s)
Técnicas Biosensibles , Disruptores Endocrinos , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente/métodos , Humanos , Ligandos , Ríos , Población Rural , Agua , Contaminantes Químicos del Agua/análisis
9.
J Hazard Mater ; 401: 123395, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-32653796

RESUMEN

A visible light self-powered photoelectrochemical (PEC) aptasensor based on silver chromate particles, graphitic carbon nitride nanosheets and graphene oxide sheets (Ag2CrO4/g-C3N4/GO) for the ultrasensitive detection of chloramphenicol (CAP) was reported in this work. g-C3N4 was considered to be the fundamental photoelectric material because of its great oxidation ability of photogenerated hole as well as excellent biocompatibility and low toxicity. However, the narrow light absorption range and rapid carrier recombination rate limit the application of pure g-C3N4. Herein, Ag2CrO4 and GO as photosensitizer were introduced to improve the photoelectric properties of g-C3N4. The photocurrent of the developed ternary composite was about 3 times higher than that of pristine g-C3N4, which proves it can be used as a suitable photoelectric active material. Moreover, the mechanism of Z-scheme electron transfer path was proved by density functional theory (DFT) calculation. The fabricated PEC aptasensor exhibited high sensitivity toward CAP with a wide liner response of 0.5 pM to 50 nM and a detection limit of 0.29 pM. The specific recognition mechanism and excellent sensing performance indicated this aptasensor could serve as a useful tool for selective and ultrasensitive CAP detection in practical analysis.

10.
Anal Chem ; 92(19): 13073-13083, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32872771

RESUMEN

Herein, we developed an unmodified hexagonal boron nitride (h-BN) photoelectrochemical (PEC) biosensing platform with a low background signal and high sensitivity based on CuS quantum dots (QDs)/Co3O4 polyhedra-driven multiple signal amplifications. The prepared porous h-BN nanosheets with large specific surface areas, as the photoelectric substrate material, can provide extensive active reaction sites. Meanwhile, the CuS QDs/Co3O4 polyhedra were synthesized by the zeolitic imidazolate framework (ZIF-67) and utilized as a multiple signal amplifier, which can not only drive the p-n semiconductor quenching effect to compete with the h-BN photoelectrode for the consumption of electron donors and exciting light but also trigger a mimetic enzymatic catalytic precipitation effect to inhibit electron transfer. The quenching ability and peroxidase-like activity of CuS QDs/Co3O4 polyhedra were evaluated to prove its superiority, and the possible mechanisms of electron transfer and enzymatic catalytic were further analyzed in detail. The developed PEC biosensing platform for the chlorpyrifos assay presented outstanding performance with a wide linear range from 1 × 10-1 to 1 × 107 ng mL-1 and a low detection limit of 0.34 pg mL-1 and exhibited excellent selectivity, reproducibility, and stability. In addition, the CuS QDs/Co3O4 polyhedra-activated h-BN PEC biosensing platform may exhibit universality for various analytes via replacing the corresponding target aptamer sequence. This work provides a remarkable inspiration and valuable reference for the development of the PEC biosensor, and the signal amplifier-enabled unmodified PEC biosensing platform strategy has a bright application in early safety warning, bioanalysis and clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , Compuestos de Boro/química , Cloropirifos/análisis , Inhibidores de la Colinesterasa/análisis , Técnicas Electroquímicas , Puntos Cuánticos/química , Cobalto/química , Cobre/química , Óxidos/química , Tamaño de la Partícula , Procesos Fotoquímicos , Porosidad , Propiedades de Superficie
11.
Biosens Bioelectron ; 164: 112328, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32553353

RESUMEN

Quantum-sized cerium dioxide (CeO2) show high catalytic capability as well as strong light absorption ability owing to its redox couple Ce4+/Ce3+ and abundant oxygen vacancies, which making it a potential material for designing superior photoelectrochemical (PEC) sensors. However, it has scarcely been applied in the field of PEC sensing, because its wide band gap and aggregation effect can restrict the photoelectric conversion efficiency. Herein, we address these two obstacles by coupling CeO2 quantum dots (QDs) with graphitic carbon nitride (g-CN) and Au nanoparticles (NPs). The electron transfer path in this proposed heterojunction was proved by density functional theory (DFT) calculation for the first time, which provided theoretical support for the detection of MC-LR. The as-obtained PEC aptasensor exhibited excellent analytical performance with a wide liner response of 0.05-105 pM, and the detection limit was 0.01 pM. By designing appropriate sensing system and specific recognition mechanism, this work may pave a unique avenue for constructing ultrasensitive and selective analysis of MC-LR in complex environment without any external electric source.


Asunto(s)
Técnicas Biosensibles , Toxinas Marinas , Nanopartículas del Metal , Microcistinas , Teoría Funcional de la Densidad , Técnicas Electroquímicas , Oro , Límite de Detección , Toxinas Marinas/análisis , Microcistinas/análisis
12.
Biosens Bioelectron ; 146: 111756, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31605990

RESUMEN

Nanozymes have gained increasing attention in the field of biosensing. Rationally designed nanozymes with excellent catalytic activity are accessible to substitute natural enzymes. Herein, a novel self-powered photoelectrochemical (PEC) aptasensor was constructed for ultrasensitive detection of chloramphenicol (CAP) based on ultrathin PtNi nanowires (NWs) as nanozyme and benzene-ring doped g-C3N4 (BR-CN) as the photoactive material. The prepared 1-nm-thick PtNi nanozyme acted as a peroxidase, possessing higher catalytic activity than natural horseradish peroxidase (HRP) and other Pt-based mimic enzymes. Through the biotin-streptavidin specific interaction, streptavidin modified PtNi nanozyme was introduced into the dual-stranded DNA (dsDNA) formed by complementary DNA and biotinylated CAP aptamer. The PtNi nanozyme catalyzed 4-chloro-1-naphthol (4-CN) oxidation to generate insoluble precipitation on the electrode surface, resulting in an obvious photocurrent reduction. In the presence of CAP, the CAP aptamer was released from the electrode due to strong affinity with CAP, causing the decrease of catalytic precipitation and consequently the generation of a high photocurrent signal. On the basis of PtNi nanozyme signal amplification, the developed self-powered PEC aptasensor showed a wide linear range of 0.1 pM-100 nM with an ultralow detection limit of 26 fM for the determination of CAP. This work provides a feasible strategy for the design of high-activity nanozyme and self-powered PEC biosensor to achieve the ultrasensitive detection of target analyte.


Asunto(s)
Antibacterianos/análisis , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/instrumentación , Cloranfenicol/análisis , Nanocables/química , Animales , Antibacterianos/orina , Benceno/química , Cloranfenicol/orina , Técnicas Electroquímicas/instrumentación , Diseño de Equipo , Límite de Detección , Leche/química , Níquel/química , Platino (Metal)/química , Ríos/química , Porcinos
13.
Biosens Bioelectron ; 142: 111546, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31387026

RESUMEN

This work presents a novel hexagonal boron nitride (h-BN) based self-powered photoelectrochemical (PEC) aptasensor for ultrasensitive detection of diazinon (DZN) with excellent photoelectric conversion efficiency. It was the first time that h-BN based materials were applied to PEC aptasensor, in which the construction of Z-scheme heterojunction of h-BN and graphitic carbon nitride (CN) via doping sulfur into h-BN was innovatively proposed. Meanwhile, Au nanoparticles (AuNPs) were utilized for the surface plasmon resonance (SPR) effect and the formation of new recombination centers. The charge transfer mechanism was expounded and verified by the electron spin resonance (ESR) spin-trap technique. The proposed PEC aptasensor for determination of DZN exhibited a wide linear range from 0.01 to 10000 nM and a low detection limit of 6.8 pM with superb selectivity and remarkable stability. Moreover, the constructed PEC aptasensor performed well with excellent recoveries in three different real samples. This work illustrated that PEC aptasensor is a promising alternative to conventional analytical technologies for the detection of DZN and other organophosphorus (OP) pesticides. The designing ideas of the proposed h-BN based material can provide a foothold for the innovative construction of photoactive materials for PEC bioanalysis.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Compuestos de Boro/química , Diazinón/análisis , Plaguicidas/análisis , Técnicas Electroquímicas/métodos , Contaminantes Ambientales/análisis , Oro/química , Grafito/química , Límite de Detección , Nanopartículas del Metal/química , Modelos Moleculares , Compuestos de Nitrógeno/química
14.
Nanoscale ; 11(25): 12198-12209, 2019 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-31199416

RESUMEN

Based on the unique photoelectrochemical properties of a CoO/Au/g-C3N4 Z-scheme heterojunction, a self-powered photoelectrochemical (PEC) aptasensor was constructed for the detection of microcystin-leucine arginine (MC-LR). Z-scheme heterojunctions can promote the separation of a photo-induced electron-hole pair, and the surface plasmonic resonance (SPR) of Au nanoparticles can significantly enhance the adsorption of visible light. Importantly, MC-LR molecules were captured by aptamers initially immobilized on the modified electrode due to their high affinity, and then oxidized by the photogenerated holes, which caused an amplified photocurrent signal, allowing the quantitative analysis of MC-LR by measuring the photocurrent intensity change. This PEC MC-LR aptasensor showed high sensitivity and selectivity within a wide linear response range from 0.1 pM to 10 nM and a detection limit of 0.01 pM. The application of this sensor in the analysis of lake water samples provided accurate results with a relative standard deviation (RSD) of 2.6%-4.2%.


Asunto(s)
Cobre/química , Técnicas Electroquímicas , Oro/química , Luz , Microcistinas/química , Procesos Fotoquímicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...