Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 469: 134061, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38508113

RESUMEN

Hemocytes are important targets for heavy metal-induced immunotoxicity in insects. This study aimed to investigate the mechanism by which cadmium (Cd) exposure affects the hemocyte count in Lymantria dispar larvae. The results showed that the number of larval hemocytes was significantly decreased under Cd exposure, accompanied by a significant increase in the apoptosis rate and the expression of Caspase-3. The endoplasmic reticulum (ER) of hemocytes in the Cd-treated group showed irregular swelling. Expression levels of ER stress indicator genes (CHOP, Bip1, Bip2, Bip3, and Bip4) were significantly higher in the Cd-treated group. Among the three pathways that potentially mediate ER stress, only the key genes in the ATF6 pathway (ATF6, S1P-1, S1P-2, and WFS1) exhibited differential responses to Cd exposure. Cd exposure significantly increased the levels of reactive oxygen species (ROS) and the expression of oxidative stress-related genes (CNCC, P38, and ATF2) in hemocytes. Studies using inhibitors confirmed that apoptosis mediated the decrease in hemocyte count, ER stress mediated apoptosis, ATF6 pathway mediated ER stress, and ROS or oxidative stress mediated ER stress through the activation of the ATF6 pathway. Taken together, the ROS-ATF6-ER stress-apoptosis pathway is responsible for the reduction in the hemocyte count of Cd-treated L. dispar larvae.


Asunto(s)
Cadmio , Hemocitos , Animales , Especies Reactivas de Oxígeno/metabolismo , Cadmio/toxicidad , Complejo de Polillas Esponjosas Voladoras , Larva/metabolismo , Apoptosis
2.
Sci Total Environ ; 916: 170274, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38262537

RESUMEN

Heavy metal (HM) pollution is a severe global environmental issue. HMs in the environment can transfer along the food chain, which aggravates their ecotoxicological effect and exposes the insects to heavy metal stress. In addition to their growth-toxic effects, HMs have been reported as abiotic environmental factors that influence the implementation of integrated pest management strategies, including microbial control, enemy insect control, and chemical control. This will bring new challenges to pest control and further highlight the ecotoxicological impact of HM pollution. In this review, the relationship between HM pollution and insecticide tolerance in pests was analyzed. Our focus is on the risks of HM exposure to pests, pests tolerance to insecticides under HM exposure, and the mechanisms underlying the effect of HM exposure on pests tolerance to insecticides. We infer that HM exposure, as an initial stressor, induces cross-tolerance in pests to subsequent insecticide stress. Additionally, the priming effect of HM exposure on enzymes associated with insecticide metabolism underlies cross-tolerance formation. This is a new interdisciplinary field between pollution ecology and pest control, with an important guidance value for optimizing pest control strategies in HM polluted areas.


Asunto(s)
Insecticidas , Metales Pesados , Animales , Insecticidas/toxicidad , Insectos , Metales Pesados/toxicidad , Control de Insectos , Contaminación Ambiental
3.
Insects ; 14(5)2023 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-37233091

RESUMEN

Digestive physiology mediates the adaptation of phytophagous insects to host plants. In this study, the digestive characteristics of Hyphantria cunea larvae feeding preferences on different host plants were investigated. The results showed that the body weight, food utilization, and nutrient contents of H. cunea larvae feeding on the high-preference host plants were significantly higher than those feeding on the low-preference host plants. However, the activity of larval digestive enzymes in different host plants presented an opposite trend, as higher α-amylase or trypsin activity was observed in the group feeding on the low-preference host plants than that feeding on the high-preference host plants. Upon treatment of leaves with α-amylase and trypsin inhibitors, the body weight, food intake, food utilization rate, and food conversion rate of H. cunea larvae significantly decreased in all host plant groups. Furthermore, the H. cunea comprised highly adaptable compensatory mechanisms of digestion involving digestive enzymes and nutrient metabolism in response to digestive enzyme inhibitors. Taken together, digestive physiology mediates the adaptation of H. cunea to multiple host plants, and the compensatory effect of digestive physiology is an important counter-defense strategy implemented by H. cunea to resist plant defense factors, especially the insect digestive enzyme inhibitors.

4.
Ecotoxicol Environ Saf ; 260: 115071, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37257345

RESUMEN

Biological control is widely used for integrated pest management. However, there are many abiotic factors that can affect the biocontrol efficiency. In this study, we investigated the susceptibility of Hyphantria cunea larvae to Beauveria bassiana under Cd stress, and the corresponding mechanism was analyzed around innate immunity and energy metabolism. The results showed that mortality of H. cunea larvae treated with Cd and B. bassiana was significantly higher than those treated with B. bassiana alone, and the combined lethal effect exhibited a synergistic effect. Compared with the single fungal treatment group, the total hemocyte count in the combined Cd and fungal treatment group decreased significantly, accompanied by a decrease in phagocytosis, encapsulation, and melanization activity. The expression levels of three phagocytosis-related genes, one encapsulation-promoting gene, and one melanization-regulating gene were significantly lower in the combined treatment group than those in the single fungal treatment group. Furthermore, pathogen recognition ability, signal transduction level, and immune effector expression level were weaker in the combined treatment group than those in the single fungal treatment group. The expression levels of 14 key metabolites and 7 key regulatory genes in glycolysis and tricarboxylic acid cycle pathways were significantly lower in the combined treatment group than those in the single fungal treatment group. Taken together, the weakness of innate immunity and energy metabolism in response to pathogen infection resulted in an increased susceptibility of H. cunea larvae to B. bassiana under Cd pre-exposure. Microbial insecticide is a preferred strategy for pest control in heavy metal-polluted areas. AVAILABILITY OF DATA AND MATERIAL: All the data that support the findings of this study are available in the manuscript.


Asunto(s)
Beauveria , Mariposas Nocturnas , Animales , Larva/genética , Beauveria/fisiología , Cadmio , Inmunidad Innata , Metabolismo Energético
5.
Sci Total Environ ; 887: 164106, 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37178833

RESUMEN

The toxicity of heavy metals on various trophic levels along the food chain has been extensively investigated, but no studies have focused on parasitic natural enemy insects. Herein, we constructed a food chain consisting of soil-Fraxinus mandshurica seedlings-Hyphantria cunea pupae-Chouioia cunea to analyze the effects of Cd exposure through food chain on the fitness of parasitic natural enemy insects and its corresponding mechanism. The results showed that the transfer of Cd between F. mandshurica leaves and H. cunea pupae and between H. cunea pupae and C. cunea was a bio-minimization effect. After parasitizing Cd-accumulated pupa, the number of offspring larvae, and the number, individual size (body weight, body length, abdomen length) and life span of offspring adults decreased significantly, while the duration of embryo development extended significantly. The contents of malondialdehyde and H2O2 in Cd-exposed offspring wasps increased significantly, accompanied by a significantly decrease in antioxidant capacity. The cellular immunity parameters significantly decreased in Cd-accumulated pupae, including the number of hemocytes, melanization activity and the expression level of cellular immunity genes (e.g. Hemolin-1 and PPO1). The humoral immunity disorder was found in the Cd-accumulated pupae, as evidenced by that the expression level of immune recognition gene (PGRP-SA), signal transduction genes (IMD, Dorsal, and Tube), as well as all antimicrobial peptide genes (e.g. Lysozym and Attacin) decreased significantly. Cd exposure decreased the content of glucose, trehalose, amino acid, and free fatty acid in H. cunea pupae. The expression of Hk2 in glycolysis pathway and the expression of Idh2, Idh3, Cs, and OGDH in TCA cycle pathway were significantly down-regulated in Cd-accumulated pupae. Taken together, exposure to Cd through the food chain causes oxidative damage on the offspring wasps and disrupts energy metabolism of the host insect, ultimately reducing the parasitic fitness of C. cunea to H. cunea pupae.


Asunto(s)
Mariposas Nocturnas , Avispas , Animales , Pupa/parasitología , Pupa/fisiología , Cadmio , Cadena Alimentaria , Peróxido de Hidrógeno , Larva , Avispas/fisiología , Control de Plagas
6.
Ecotoxicol Environ Saf ; 256: 114886, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37037109

RESUMEN

Serious environmental pollution in the ecosystem makes phytophagous insects face a great risk of exposure to pollutants, especially heavy metals. This study aims to understand the effects of Cd exposure on the growth and development of Hyphantria cunea and to elucidate the mechanism of growth toxicity induced by Cd from the perspective of food utilization and energy metabolism. Our results showed that the larval basal growth data, growth index, fitness index, and standard growth index were significantly decreased after feeding on Cd-containing artificial diets. The Cd-treated larvae had significantly higher digestibility than the untreated larvae. However, the food consumption, efficiency of conversion of digested food, and efficiency of conversion of ingested food were significantly lower than those of untreated larvae. Eight key metabolites in the glycolysis pathway and six key metabolites in the tricarboxylic acid cycle pathway were significantly reduced in Cd-treated larvae. The mRNA expression levels of two regulatory genes (6-phosphofructokinase 1 and hexokinase-1) belonging to two key enzymes in the glycolysis pathway and four regulatory genes (isocitrate dehydrogenase-1, isocitrate dehydrogenase-3, citrate synthase, and oxoglutarate dehydrogenase) belonging to three key enzymes in the tricarboxylic acid cycle pathway were significantly lower in the Cd-treated group than in the control group. Furthermore, most fitness-related traits were significantly and positively correlated with food utilization (except approximate digestibility) or energy metabolism parameters. Taken together, Cd exposure-triggered growth retardation of H. cunea larvae is a consequence of disturbances in food utilization and energy metabolism, thereby emphasizing the toxicity of heavy metals.


Asunto(s)
Cadmio , Mariposas Nocturnas , Animales , Larva , Cadmio/metabolismo , Ecosistema , Isocitrato Deshidrogenasa/metabolismo , Metabolismo Energético , Trastornos del Crecimiento
7.
J Hazard Mater ; 453: 131420, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37084517

RESUMEN

Heavy metal can affect the bio-control efficiency of entomopathogenic fungi on pests, but this has not been studied in the food chain. Here, the food chain of soil-Fraxinus mandshurica-Hyphantria cunea was constructed to investigate the effect of cadmium (Cd) exposure on the susceptibility of H. cunea larvae to Beauveria bassiana (Bb) and to analyze the corresponding mechanism through larval innate immunity and energy metabolism. Cd through the food chain synergistically enhanced the susceptibility of H. cunea larvae to Bb. Cellular immunity-related parameters decreased when the Cd treatment group was compared with the control group and when the combined treatment group of Cd and Bb was compared with the Bb treatment group. Cd exposure induced hormesis on pathogen recognition and signal transduction genes of humoral immunity, but reduced the expression of effector genes. The expression of the 13 humoral immunity-related genes in the combined treatment group was lower than in the Bb treatment group. Cd exposure decreased the energy storage of H. cunea larvae before Bb infection and aggravated the disorder level of energy metabolism after Bb infection. Taken together, disturbance of innate immunity and energy metabolism improves the susceptibility of H. cunea larvae to Bb in the Cd-polluted food chain.


Asunto(s)
Beauveria , Mariposas Nocturnas , Animales , Larva/genética , Cadmio/toxicidad , Cadena Alimentaria
8.
Pestic Biochem Physiol ; 191: 105383, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36963948

RESUMEN

Heavy metal pollution is an abiotic factor that can affect the efficiency of pest control. In this study, two microbial pesticides, Bacillus thuringiensis and Mamestra brassicae nuclear polyhedrosis virus (MbNPV), were used to treat Hyphantria cunea larvae with Cd pre-exposure, and the humoral and cellular immunity of H. cunea larvae with Cd exposure were evaluated. The results showed that Cd exposure increased the susceptibility of H. cunea larvae to microbial pesticides B. thuringiensis and MbNPV, and the lethal effect of Cd exposure and microbial pesticides on H. cunea larvae was synergistic. Cd exposure significantly decreased the expression of pathogen recognition genes (GNBP1 and GNBP3), signal transduction genes (Relish, Myd88, Tube, and Imd), and antimicrobial peptide gene (Lebocin) in the humoral immunity of H. cunea larvae compared with the untreated larvae. Parameters of cellular immunity, including the number of hemocytes, phagocytic activity, melanization activity, encapsulation activity, and the expression of three phagocytic regulatory genes (HEM1, GALE1, GALE2), were also found to decrease significantly in Cd-treated larvae. TOPSIS analysis showed that humoral immunity, cellular immunity, and total immunity levels of H. cunea larvae with Cd exposure were weaker than those in untreated larvae. Correlation analysis showed that the mortality of two microbial pesticides investigated in H. cunea larvae was negatively correlated with the humoral and cellular immunity of larvae. Taken togther, Cd exposure results in immunotoxic effects on H. cunea larvae and the use of microbial pesticides are an effective strategy for pest control in heavy metal-polluted areas.


Asunto(s)
Bacillus thuringiensis , Mariposas Nocturnas , Nucleopoliedrovirus , Plaguicidas , Animales , Larva/genética , Bacillus thuringiensis/genética , Cadmio/toxicidad , Mariposas Nocturnas/genética
9.
Sci Total Environ ; 859(Pt 2): 160390, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36427402

RESUMEN

Heavy metal pollution, as a common and serious environmental problem worldwide, has been regarded as an abiotic stimulus that can affect plant insect resistance and pest occurrence. This study evaluated the defense response of Fraxinus mandshurica seedlings to Hyphantria cunea larvae under Cd stress, with consideration given to chemical defense, physical defense, and elemental defense. Our results showed that the H. cunea larvae had a strong preference for Cd-treated F. mandshurica seedlings, but there was a significant reduction in body weight and survival rate in larvae that fed on leaves of Cd-treated seedlings. Under Cd treatment, the increase in attractant metabolites (e.g., styrene, dibutyl phthalate, and d-limonene) and the decrease in repellent metabolites (e.g., aromadendrene, heptadecane, and camphene) in leaf volatiles were responsible for the high attractant activity to H. cunea larvae. Based on leaf physicochemical properties, tissue structure, and phenolic acid content, an overall reduction in physical defense, chemical defense and their combination in F. mandshurica seedlings exposed to Cd stress was identified by Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) analysis. Elemental defense occurred in Cd-treated F. mandshurica seedlings, as evidenced by the high concentration of Cd in leaves and H. cunea larvae under Cd treatment. Taken together, these findings demonstrate that under Cd stress, elemental defense replaces the dominant role of basic defense in F. mandshurica seedlings and accounts for the enhanced ability to defend against H. cunea larvae.


Asunto(s)
Fraxinus , Mariposas Nocturnas , Animales , Larva , Fraxinus/fisiología , Plantones , Cadmio/toxicidad
10.
Insects ; 13(11)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36354825

RESUMEN

Arbuscular mycorrhizal fungi (AMF) are considered as important biological factors that can affect insect resistance of plants. Herein, we used AMF-poplar seedlings that could either increase or decrease the resistance to gypsy moth larvae, to elucidate the mechanism of mycorrhizal-induced insect resistance/susceptibility at the larval microbial and metabolic levels. Our results found that larval plant consumption and growth were significantly inhibited in the Glomus mossae (GM)-colonized seedlings, whereas they were enhanced in the Glomus intraradices (GI)-colonized seedlings. GM inoculation reduced the beneficial bacteria abundance in the larval gut and inhibited the detoxification and metabolic functions of gut microbiota. However, GI inoculation improved the larval gut environment by decreasing the pathogenic bacteria and activating specific metabolic pathways. Furthermore, GM inoculation triggers a metabolic disorder in the larval fat body, accompanied by the suppression of detoxification and energy production pathways. The levels of differentially accumulated metabolites related to amino acid synthesis and metabolism and exogenous toxin metabolism pathways were significantly increased in the GI group. Taken together, the disadaptation of gypsy moth larvae to leaves of GM-colonized seedlings led to the GM-induced insect resistance in poplar, and to the GI-induced insect susceptibility involved in the improvement of larval gut environment and fat body energy metabolism.

11.
Front Neurorobot ; 16: 1022887, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213146

RESUMEN

In this paper, a nonlinear activation function (NAF) is proposed to constructed three recurrent neural network (RNN) models (Simple RNN (SRNN) model, Long Short-term Memory (LSTM) model and Gated Recurrent Unit (GRU) model) for sentiment classification. The Internet Movie Database (IMDB) sentiment classification experiment results demonstrate that the three RNN models using the NAF achieve better accuracy and lower loss values compared with other commonly used activation functions (AF), such as ReLU, SELU etc. Moreover, in terms of dynamic problems solving, a fixed-time convergent recurrent neural network (FTCRNN) model with the NAF is constructed. Additionally, the fixed-time convergence property of the FTCRNN model is strictly validated and the upper bound convergence time formula of the FTCRNN model is obtained. Furthermore, the numerical simulation results of dynamic Sylvester equation (DSE) solving using the FTCRNN model indicate that the neural state solutions of the FTCRNN model quickly converge to the theoretical solutions of DSE problems whether there are noises or not. Ultimately, the FTCRNN model is also utilized to realize trajectory tracking of robot manipulator and electric circuit currents computation for the further validation of its accurateness and robustness, and the corresponding results further validate its superior performance and widespread applicability.

12.
Insects ; 13(10)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36292820

RESUMEN

To increase the development potential of botanical pesticides, it is necessary to expand the toxicology research on plant secondary metabolites. Herein, the Hyphantria cunea larvae were exposed to tannic acid concentrations consistent with those found in larch needles, and, subsequently, the growth and nutrient utilization, oxidative damage, and detoxification abilities in the larval midgut, as well as the changes in the gut microbiome, were analyzed. Our results revealed that tannic acid treatment significantly increased the mortality of H. cunea larvae and inhibited larval growth and food utilization. The contents of malondialdehyde and hydrogen peroxide in the larval midgut were significantly elevated in the treatment group, along with a significant decrease in the activities of antioxidant enzymes and detoxifying enzymes. However, the non-enzymatic antioxidants showed a significant increase in the tannic acid-treated larvae. From gut microbiome analysis in the treatment group, the abundance of gut microbiota related to toxin degradation and nutrient metabolism was significantly reduced, and the enrichment analysis also suggested that all pathways related to nutritional and detoxification metabolism were substantially inhibited. Taken together, tannic acid exerts toxic effects on H. cunea larvae at multiple levels and is a potential botanical pesticide for the control of H. cunea larvae.

13.
Ecotoxicol Environ Saf ; 241: 113763, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35696962

RESUMEN

The immunotoxicity induced by heavy metals on herbivorous insects reflect the alterations of the susceptibility to entomopathogenic agents in herbivorous insects exposed to heavy metal. In the present study, the susceptibility of gypsy moth larvae to Bacillus thuringiensis under Cd treatment at low and high dosages was investigated, and the gut microbiome-hemolymph metabolome responses that affected larval disease susceptibility caused by Cd exposure were examined. Our results showed that mortality of gypsy moth larvae caused by B. thuringiensis was significantly higher in larvae pre-exposed to Cd stress, and there was a synergistic effect between Cd pre-exposure and bacterial infection. Exposure to Cd significantly decreased the abundance of several probiotics (e.g., Serratia for the low Cd dosage and Weissella, Aeroonas, and Serratia for the high Cd dosage) and increased the abundances of several pathogenic bacteria (e.g., Stenotrophomonas, Gardnerella, and Cutibacterium for the low Cd dosage and Pluralibacter and Tsukamurella for the high Cd dosage) compared to the controls. Moreover, metabolomics analysis indicated that amino acid biosynthesis and metabolism were significantly perturbed in larval hemolymph under Cd exposure at both the low and high dosages. Correlation analysis demonstrated that several altered metabolites in larval hemolymph were significantly correlated with changes in the gut microbial community. The results demonstrate that prior exposure to Cd increases the susceptibility of gypsy moth larvae to B. thuringiensis in a synergistic fashion due to gut microbiota dysbiosis and hemolymph metabolic disorder, and thus microbial-based biological control may be the best pest control strategy in heavy metal-polluted areas.


Asunto(s)
Bacillus thuringiensis , Microbioma Gastrointestinal , Mariposas Nocturnas , Animales , Bacillus thuringiensis/fisiología , Cadmio/toxicidad , Disbiosis , Hemolinfa , Larva/microbiología , Mariposas Nocturnas/fisiología
14.
Ecotoxicol Environ Saf ; 235: 113434, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35338967

RESUMEN

Heavy metal exposure-triggered growth retardation and physiology disorder in phytophagous insects have been widely understood, but only a few studies have investigated its immunomodulatory effects on herbivorous insects. Here, the innate immunity of gypsy moth (Lymantria dispar) larvae under Cd stress was evaluated by integrating cellular and humoral immunity, and the immunomodulation mechanism of Cd stress was further understood by the proteomics analysis of larval hemolymph. Our results showed that the total hemocyte count, as well as phagocytic, encapsulation and bacteriostatic activity, of hemolymph in gypsy moth larvae exposed to Cd stress was significantly lower than that in un-treated larvae. Further proteomic analysis revealed that Cd exposure may reduce the total hemocyte count in larval hemolymph by inducing endoplasmic reticulum pathway-mediated hemocyte apoptosis, thereby causing the collapse of cellular immunity in gypsy moth larvae. In addition, the transcriptional level of signal transduction genes (IMD, Toll, Relish, JAK and STAT) and antimicrobial peptide genes (cecropin and lebocin), as well as the protein abundance of pattern recognition receptors (PGRP and GNBP3) in the Toll, IMD and JAK/STAT signaling pathways was significantly decreased in Cd-treated larvae, clearly implying an immunosuppresive effect of Cd stress on pathogen recognition, signal transduction and effector synthesis of humoral immunity in gypsy moth larvae. Taken together, these results suggest that Cd exposure decreases both cellular immunity and humoral immunity of gypsy moth larvae, and provides a new entry point for systematically and comprehensively unraveling the heavy metal pollutants-caused immunotoxicity.


Asunto(s)
Inmunidad Humoral , Mariposas Nocturnas , Animales , Cadmio/metabolismo , Cadmio/toxicidad , Inmunidad Celular , Larva/metabolismo , Proteómica
15.
Ecotoxicol Environ Saf ; 232: 113280, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35124420

RESUMEN

Biological control is an environmentally friendly and effective pest control strategy, but it is often affected by a variety of abiotic factors in the pest control area. Here, the susceptibility of gypsy moth larvae to Mamestra brassicae nuclear polyhedrosis virus (MbNPV) under Cd treatment at the low and high dosages was investigated, and the mechanism of Cd stress affecting virus susceptibility of gypsy moth larvae was analyzed from a metabolic perspective by combining transcriptome and metabolome of the larval fat body. Our results showed that the mortality of MBNPV infection on gypsy moth larvae pre-exposed to Cd was significantly higher than that of larvae without Cd pre-exposure, and the joint effects of Cd exposure and virus infection on larval mortality were demonstrated to be synergistic. Transcriptome analysis revealed that amino acid and carbohydrate transport and metabolism accounted for most of the differently expressed genes in the low Cd and high Cd treatment groups. Consistent with the transcriptome results, metabolome analysis also showed that most metabolites affected by Cd exposure were involved in amino acid and carbohydrate metabolism. Function analysis showed that the contents of several amino acids (e.g. tryptophan and tyrosine) with antioxidant properties were significantly increased in Cd-treated gypsy moth larvae. Taken together, Cd exposure as an environmental factor, promotes the susceptibility of gypsy moth larvae to MbNPV, and metabolic disruption, especially amino acids and carbohydrates-related metabolism, is responsible for the increased susceptibility of gypsy moth larvae to virus under Cd stress.


Asunto(s)
Mariposas Nocturnas , Nucleopoliedrovirus , Animales , Cadmio , Larva , Transcriptoma
16.
Tree Physiol ; 42(5): 1059-1069, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35022794

RESUMEN

Arbuscular mycorrhizal (AM) fungi are an alternative to chemical insecticides or fertilizers, and there is an urgent need to extend the application of AM fungi to woody plants. This study aims to investigate the growth and resistance against the gypsy moth larvae (Lymantria dispar) in Glomus intraradices-colonized Populus alba × P. berolinensis seedlings, and to unravel the transcriptome and metabolome phenotypes recruited by AM fungus colonization that affect plant growth and insect resistance. Our results showed a positive mycorrhizal growth response, i.e., growth and biomass of mycorrhizal seedlings were enhanced. However, AM fungus inoculation reduced the resistance of poplar to gypsy moth larvae, as evidenced by the decreased carbon/nitrogen ratio in leaves, as well as the increased larval growth and shortened larval developmental duration. Transcriptome analysis revealed that in both auxin and gibberellin signaling transductions, all nodes were responsive to AM symbiosis and most differentially expressed genes belonging to effectors were up-regulated in mycorrhizal seedlings. Furthermore, the two key enzymes (4-coumarate-CoA ligase and trans-cinnamate 4-monooxygenase) involved in the synthesis of p-Coumaroyl-CoA, an initial metabolite in flavonoid biosynthesis and the first rate-limiting enzyme (chalcone synthase) in flavonoid biosynthesis, were down-regulated at the transcriptional level. Consistent with the transcriptome results, metabolome analysis found that the amounts of all differentially accumulated flavonoid compounds (e.g., catechin and quercetin) identified in mycorrhizal seedlings were decreased. Taken together, these findings highlight the diverse outcomes of AM fungi-host plant-insect interaction and reveal the regulatory network of the positive mycorrhizal growth response and mycorrhizal-induced reduction of insect resistance in poplar.


Asunto(s)
Mariposas Nocturnas , Micorrizas , Populus , Animales , Flavonoides/metabolismo , Micorrizas/fisiología , Raíces de Plantas/metabolismo , Populus/genética , Plantones/genética , Plantones/microbiología , Simbiosis
17.
J Healthc Eng ; 2021: 2704753, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956562

RESUMEN

Objective: This study explores the effect and mechanism of propofol for thyroid tumor. Methods: Culture human normal thyroid cells Nthy-ori 3-1 and thyroid cancer cell line TPC-1. TPC-1 cells were divided into the propofol group (treated with propofol), miR-141-3p group (transfected with the miR-141-3p mimic), negative control group (transfected with miR-NC), miR-141-3p + pcDNA-BRD4 group (transfected with the miR-141-3p mimic and pcDNA-BRD4), miR-141-3p + pcDNA group (transfected with the miR-141-3p mimic and pcDNA), siBRD4 group (transfected with siBRD4), and si-control group (transfected with si-control). The detection of miR-141-3p and BRD4 expression in cells was done by RT-qPCR, and the dual-luciferase reporter gene method and western blotting were used to verify the targeting relationship between miR-141-3p and BRD4. MTT method was used to test cell proliferation, transwell method was used to test cell migration and invasion, and western blotting was used to test SHH, GLI1, p-PI3K, and p-AKT protein expression. Results: Compared with Nthy-ori 3-1 cells, the expression of miR-141-3p in TPC-1 cells was markedly decreased. Propofol treatment and excessive expression of miR-141-3p could influence the phenotype of TPC-1 cells. BRD4 is one of the target genes of miR-141-3p, and its expression is negatively regulated by miR-141-3p. Overexpression of BRD4 can partially reverse the restraining effect of miR-141-3p on the TPC-1 cell phenotype. Both miR-141-3p and BRD4 can regulate the activity of SHH and PI3K/AKT signaling pathways. Conclusion: Propofol can inhibit the activity of SHH and PI3K/AKT pathways by targeting downregulating BRD4 through miR-141-3p, thereby inhibiting the phenotype of TPC-1 cells.


Asunto(s)
MicroARNs , Propofol , Neoplasias de la Tiroides , Proteínas de Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Proteínas Hedgehog , Humanos , MicroARNs/genética , Proteínas Nucleares/genética , Fosfatidilinositol 3-Quinasas , Propofol/farmacología , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Factores de Transcripción/genética
18.
Hortic Res ; 8(1): 245, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34848684

RESUMEN

Arbuscular mycorrhizal (AM) fungi may help protect plants against herbivores; however, their use for the pest control of woody plants requires further study. Here, we investigated the effect of Glomus mosseae colonization on the interactions between gypsy moth larvae and Populus alba × P. berolinensis seedlings and deciphered the regulatory mechanisms underlying the mycorrhizal-induced resistance in the leaves of mycorrhizal poplar using RNA-seq and nontargeted metabolomics. The resistance assay showed that AM fungus inoculation protected poplar seedlings against gypsy moth larvae, as evidenced by the decreased larval growth and reduced larval survival. A transcriptome analysis revealed that differentially expressed genes (DEGs) were involved in jasmonic acid biosynthesis (lipoxygenase, hydroperoxide dehydratase, and allene oxide cyclase) and signal transduction (jasmonate-ZIM domain and transcription factor MYC2) and identified the genes that were upregulated in mycorrhizal seedlings. Except for chalcone synthase and anthocyanidin synthase, which were downregulated in mycorrhizal seedlings, all DEGs related to flavonoid biosynthesis were upregulated, including 4-coumarate-CoA ligase, chalcone isomerase, flavanone 3-hydroxylase, flavonol synthase, and leucoanthocyanidin reductase. The metabolome analysis showed that several metabolites with insecticidal properties, including coumarin, stachydrine, artocarpin, norizalpinin, abietic acid, 6-formylumbelliferone, and vanillic acid, were significantly accumulated in the mycorrhizal seedlings. These findings suggest the potential of mycorrhiza-induced resistance for use in pest management of woody plants and demonstrate that the priming of JA-dependent responses in poplar seedlings contributes to mycorrhiza-induced resistance to insect pests.

19.
Pestic Biochem Physiol ; 174: 104805, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33838706

RESUMEN

Hyphantria cunea is one of the most destructive invasive agricultural and forest pests worldwide. In order to better understand the adaptation mechanism of H. cunea larvae to secondary metabolites of their highly diversified host plants, the physiological function and detoxification ability of midgut, as well as the gut microbial community were investigated in H. cunea larvae fed with cinnamic acid-treated artificial diets. Our results showed that cinnamic acid treatment could not affect the growth and food utilization of H. cunea larvae, as evidenced by a non-significantly altered larval body weight and efficiency of conversion of ingested food. Evaluation of oxidative stress-related parameters (e.g. malondialdehyde and hydrogen peroxide) and midgut histopathology also clearly confirmed that cinnamic acid treatment caused no significant oxidative damage and pathological changes in the larval midgut. Variance analysis showed that cinnamic acid treatment significantly increased the content of non-enzymatic antioxidants (ascorbic acid and glutathione), the activity of antioxidant enzymes (superoxide dismutase and peroxidase) and detoxification enzyme (carboxylate esterase), as well as the abundance of several gut microbiota at the genus level (Hydrogenophaga and Acinetobacter) involved in the organic substance degradation in larval midgut. Further Pearson's correlation analysis revealed that these strongly altered gut microbiota at the genus level appeared to be significantly correlated with the detoxification and antioxidation parameters. These findings demonstrate the high adaptability of H. cunea larvae to cinnamic acid involves in detoxification, antioxidation and gut microbiota response, and indicate the existence of an extremely effective counter-defense mechanism for H. cunea larvae against the secondary metabolites of host plants.


Asunto(s)
Microbioma Gastrointestinal , Mariposas Nocturnas , Animales , Antioxidantes , Cinamatos , Larva
20.
Environ Pollut ; 276: 116740, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33611203

RESUMEN

Insect susceptibility to entomopathogenic microorganisms under heavy metal stress, as well as its regulatory mechanism is still poorly understood. This study aims to investigate the susceptibility of gypsy moth larvae to Beauveria bassiana under cadmium (Cd) stress (at 3.248 or 44.473 mg Cd/kg fresh food), and reveal the potential molecular mechanisms underlying the Cd effect on the larval susceptibility to B. bassiana via combined transcriptome and proteome analyses. Our results showed that pre-exposure to Cd increased the susceptibility of gypsy moth larvae to B. bassiana, and there was an additive effect between Cd exposure and B. bassiana infection on the larval mortality. Under the Cd stress at low and high concentrations, 138 and 899 differentially expressed genes (DEGs), as well as 514 and 840 differentially expressed proteins (DEPs) were identified, respectively. Immunotoxic effects induced by Cd exposure at the transcription level increased in a negative dose-response manner, with no immunity-related DEGs obtained at the low Cd concentration and a high number of immunity-related DEGs down-regulated at the high Cd concentration. In contrast, a potentially suppressed or stimulated trend in the Toll and Imd signaling pathway at protein level was revealed under low or high concentration of Cd treatment. Analysis of xenobiotics biodegradation-related pathways at both transcription and translation levels revealed that the gypsy moth larvae possessed an efficient homeostasis regulatory mechanism to the low-level Cd exposure, but exhibited a reduced xenobiotics biodegradation capability to the Cd stress at high levels. Together, these findings demonstrate Cd contamination promote the microbial-based biocontrol efficacy, and unravel the molecular regulatory network of heavy metal exposures that affects susceptibility of insects to pathogenic diseases.


Asunto(s)
Beauveria , Mariposas Nocturnas , Animales , Cadmio/toxicidad , Larva , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...