Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Biochim Biophys Acta Mol Cell Res ; : 119830, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39181218

RESUMEN

High-grade serous ovarian cancer (HGSOC) is the most aggressive type of ovarian cancer that causes great threats to women's health. Therefore, we performed RNA-sequencing technology in clinical samples to explore the molecular mechanisms underlying the progression of HGSOC. We then noticed BBOX1, a kind of 2-oxoglutarate-dependent enzyme that is highly expressed in HGSOC tumor tissues. Functional studies showed that BBOX1 promotes cell survival and growth of HGSOC cells in vitro and in vivo. Overexpression of the wild-type BBOX1 promoted cell proliferation, but the Asn191 and Asn292 mutation (key amino acid for the enzymatic activity of BBOX1) counteracted this effect (P < 0.05), which indicated that the promotion effect of BBOX1 on HGSOC cell proliferation was related to its catalytic activity. Downregulation of BBOX1 reduced the activity of the mTORC1 pathway, and decreased protein expression of IP3R3 and phosphorylation level of S6KThr389. Metabolomics analysis revealed that BBOX1 is implicated in the glucose metabolism, amino acid metabolism, and nucleotide metabolism of HGSOC cells. In addition, inhibition of BBOX1 suppressed HGSOC cell glycolysis and decreased glucose consumption, lactate production, and the expression of key factors in glycolysis. Finally, we found hypoxia induced the expression of BBOX1 in HGSOC cells and confirmed that BBOX1 could be transcriptionally activated by hypoxia-inducible factor-1α, which could directly bind to the BBOX1 promoter. In summary, BBOX1 mediated the metabolic reprogramming driven by hypoxia, and affected cell metabolism through the mTORC1 pathway, thus acting as an oncogene during HGSOC development.

2.
Am J Med Genet A ; : e63828, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058251

RESUMEN

Autosomal recessive spinocerebellar ataxias (SCARs) are a heterogeneous group of neurodegenerative disorders. VPS13D gene is currently the only gene associated with autosomal recessive spinocerebellar ataxia type 4 (SCAR4), also known as VPS13D dyskinesia. SCAR4 is a rare inherited disease, with only 34 reported cases reported worldwide. In this study, we reported three independent SCAR4 cases with adolescent onsets caused by five novel variants of the VPS13D gene. Each patient carried one frameshift and one missense variant: Patient 1 with c.10474del and c.9734C > A (p.Leu3492Tyrfs*43 and p.Thr3245Asn), Patient 2 with c.6094_6107delGTTCTCTTGATCCC and c.9734C > A (p.Val2032Argfs*7 and p.Thr3245Asn), and Patient 3 with c.11954_11963del and c.9833 T > G (p.Phe3985Serfs*10 and p.Ile3278Ser). Two of the three patients shared nystagmus with an identical variant c.9734C > A. Magnetic resonance imaging indicated thoracic spinal atrophy in all three patients and corpus callosum atrophy in one patient, along with other typical manifestations of white matter degradation, cerebral atrophy, and cerebellar atrophy. These findings expanded the genetic, clinical, and neuroimaging spectrum of SCAR4, and provided new insights into the genetic counseling, molecular mechanisms, and differential diagnosis of the disease.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38639560

RESUMEN

Rechargeable lithium-sulfur (Li-S) batteries are promising for high-energy storage. However, conventional redox reactions involving sulfur (S) and lithium (Li) can lead to unstable intermediates. Over the past decade, many strategies have emerged to address this challenge, enabling nonconventional electrochemical reactions in Li-S batteries. In our Perspective, we provide a brief review of these strategies and highlight their potential benefits. Specifically, our group has pioneered a top-down approach, investigating Li-S reactions at molecular and subatomic levels, as demonstrated in our recent work on stable S isotopes. These insights not only enhance understanding of charge transfer and storage properties but also offer exciting opportunities for advancements in battery materials research.

4.
Adv Mater ; 36(24): e2313034, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38478881

RESUMEN

Lithium metal is the ultimate anode material for pursuing the increased energy density of rechargeable batteries. However, fatal dendrites growth and huge volume change seriously hinder the practical application of lithium metal batteries (LMBs). In this work, a lithium host that preinstalled CoSe nanoparticles on vertical carbon vascular tissues (VCVT/CoSe) is designed and fabricated to resolve these issues, which provides sufficient Li plating space with a robust framework, enabling dendrite-free Li deposition. Their inherent N sites coupled with the in situ formed lithiophilic Co sites loaded at the interface of VCVT not only anchor the initial Li nucleation seeds but also accelerate the Li+ transport kinetics. Meanwhile, the Li2Se originated from the CoSe conversion contributes to constructing a stable solid-electrolyte interphase with high ionic conductivity. This optimized Li/VCVT/CoSe composite anode exhibits a prominent long-term cycling stability over 3000 h with a high areal capacity of 10 mAh cm-2. When paired with a commercial nickel-rich LiNi0.83Co0.12Mn0.05O2 cathode, the full-cell presents substantially enhanced cycling performance with 81.7% capacity retention after 300 cycles at 0.2 C. Thus, this work reveals the critical role of guiding Li deposition behavior to maintain homogeneous Li morphology and pave the way to stable LMBs.

5.
Sci Adv ; 10(13): eadl4842, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38552028

RESUMEN

The high-capacity advantage of lithium metal anode was compromised by common use of copper as the collector. Furthermore, lithium pulverization associated with "dead" Li accumulation and electrode cracking deteriorates the long-term cyclability of lithium metal batteries, especially under realistic test conditions. Here, we report an ultralight, integrated anode of polyimide-Ag/Li with dual anti-pulverization functionality. The silver layer was initially chemically bonded to the polyimide surface and then spontaneously diffused in Li solid solution and self-evolved into a fully lithiophilic Li-Ag phase, mitigating dendrites growth or dead Li. Further, the strong van der Waals interaction between the bottommost Li-Ag and polyimide affords electrode structural integrity and electrical continuity, thus circumventing electrode pulverization. Compared to the cutting-edge anode-free cells, the batteries pairing LiNi0.8Mn0.1Co0.1O2 with polyimide-Ag/Li afford a nearly 10% increase in specific energy, with safer characteristics and better cycling stability under realistic conditions of 1× excess Li and high areal-loading cathode (4 milliampere hour per square centimeter).

6.
Cell Signal ; 116: 111044, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38211842

RESUMEN

High-grade serous ovarian cancer (HGSOC) is the most lethal histotype of ovarian cancer due to its unspecific symptoms in part. ALDH1A3 (aldehyde dehydrogenase 1 family member A3) is a key enzyme for acetyl-CoA production involving aggressive behaviors of cancers. However, ALDH1A3's effects and molecular mechanisms in HGSOC remain to be clarified. Using RNA-seq and publicly available datasets, ALDH1A3 was found to be highly expressed in HGSOC, and associated with poor survival. Knockdown of ALDH1A3 prevented HGSOC tumorigenesis and enhanced cell sensitivity to paclitaxel or cisplatin. ALDH1A3 expression in HGSOC cells was found to be increased by hypoxia, but decreased by HIF-1α inhibitor KC7F2. The dual-luciferase reporter assay showed that the increased transcriptional activity of ALDH1A3 induced by HIF-1α overexpression was reduced by KC7F2. In addition, PITX1 (paired like homeodomain 1) was identified to be inhibited by ALDH1A3 knockdown, and PITX1 depletion inhibited cell proliferation. The mechanistic studies showed that ALDH1A3 knockdown reduced the acetylation of histone 3 lysine 27 (H3K27ac). Treatment of exogenous acetate with NaOAc or inhibition of histone deacetylase with Pracinostat increased H3K27ac and PITX1 levels. CHIP assay demonstrated a significant enrichment of H3K27ac at the PITX1 promoter, and ALDH1A3 knockdown reduced the binding between H3K27ac and PITX1. Taken together, our data suggest that ALDH1A3, transcriptional activated by HIF-1α, promotes tumorigenesis and decreases chemosensitivity by increasing H3K27ac of PITX1 promoter in HGSOC.


Asunto(s)
Carcinogénesis , Neoplasias Ováricas , Femenino , Humanos , Carcinogénesis/genética , Transformación Celular Neoplásica , Neoplasias Ováricas/genética , Epigénesis Genética , Acetilación
7.
Angew Chem Int Ed Engl ; 63(5): e202316087, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38093609

RESUMEN

Solid-state lithium-sulfur batteries have shown prospects as safe, high-energy electrochemical storage technology for powering regional electrified transportation. Owing to limited ion mobility in crystalline polymer electrolytes, the battery is incapable of operating at subzero temperature. Addition of liquid plasticizer into the polymer electrolyte improves the Li-ion conductivity yet sacrifices the mechanical strength and interfacial stability with both electrodes. In this work, we showed that by introducing a spherical hyperbranched solid polymer plasticizer into a Li+ -conductive linear polymer matrix, an integrated dynamic cross-linked polymer network was built to maintain fully amorphous in a wide temperature range down to subzero. A quasi-solid polymer electrolyte with a solid mass content >90 % was prepared from the cross-linked polymer network, and demonstrated fast Li+ conduction at a low temperature, high mechanical strength, and stable interfacial chemistry. As a result, solid-state lithium-sulfur batteries employing the new electrolyte delivered high reversible capacity and long cycle life at 25 °C, 0 °C and -10 °C to serve energy storage at complex environmental conditions.

8.
ACS Biomater Sci Eng ; 10(1): 365-376, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38118128

RESUMEN

Phenol-amine coatings have attracted significant attention in recent years owing to their adjustable composition and multifaceted biological functionalities. The current preparation of phenol-amine coatings, however, involves a chemical reaction within the solution or interface, resulting in lengthy preparation times and necessitating specific reaction conditions, such as alkaline environments and oxygen presence. The facile, rapid, and eco-friendly preparation of phenol-amine coatings under mild conditions continues to pose a challenge. In this study, we use a macromolecular phenol-amine, Tanfloc, to form a stable colloid under neutral conditions, which was then rapidly adsorbed on the titanium surface by electrostatic action and then spread and fused to form a continuous coating within several minutes. This nonchemical preparation process was rapid, mild, and free of chemical additives. The in vitro and in vivo results showed that the Tanfloc colloid fusion coating inhibited destructive inflammation, promoted osteogenesis, and enhanced osteointegration. These remarkable advantages of the colloidal phenol-amine fusion coating highlight the suitability of its future application in clinical practice.


Asunto(s)
Materiales Biocompatibles Revestidos , Osteogénesis , Materiales Biocompatibles Revestidos/farmacología , Materiales Biocompatibles Revestidos/química , Prótesis e Implantes , Titanio/química , Titanio/farmacología , Coloides
9.
J Am Chem Soc ; 145(47): 25643-25652, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37970704

RESUMEN

Anode-free rechargeable sodium batteries represent one of the ultimate choices for the 'beyond-lithium' electrochemical storage technology with high energy. Operated based on the sole use of active Na ions from the cathode, the anode-free battery is usually reported with quite a limited cycle life due to unstable electrolyte chemistry that hinders efficient Na plating/stripping at the anode and high-voltage operation of the layered oxide cathode. A rational design of the electrolyte toward improving its compatibility with the electrodes is key to realize the battery. Here, we show that by refining the volume ratio of two conventional linear ether solvents, a binary electrolyte forms a cation solvation structure that facilitates flat, dendrite-free, planar growth of Na metal on the anode current collector and that is adaptive to high-voltage Na (de)intercalation of P2-/O3-type layered oxide cathodes and oxidative decomposition of the Na2C2O4 supplement. Inorganic fluorides, such as NaF, show a major influence on the electroplating pattern of Na metal and effective passivation of plated metal at the anode-electrolyte interface. Anode-free batteries based on the refined electrolyte have demonstrated high coulombic efficiency, long cycle life, and the ability to claim a cell-level specific energy of >300 Wh/kg.

10.
Nat Commun ; 14(1): 7247, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945604

RESUMEN

Micron-sized Si anode promises a much higher theoretical capacity than the traditional graphite anode and more attractive application prospect compared to its nanoscale counterpart. However, its severe volume expansion during lithiation requires solid electrolyte interphase (SEI) with reinforced mechanical stability. Here, we propose a solvent-induced selective dissolution strategy to in situ regulate the mechanical properties of SEI. By introducing a high-donor-number solvent, gamma-butyrolactone, into conventional electrolytes, low-modulus components of the SEI, such as Li alkyl carbonates, can be selectively dissolved upon cycling, leaving a robust SEI mainly consisting of lithium fluoride and polycarbonates. With this strategy, raw micron-sized Si anode retains 87.5% capacity after 100 cycles at 0.5 C (1500 mA g-1, 25°C), which can be improved to >300 cycles with carbon-coated micron-sized Si anode. Furthermore, the Si||LiNi0.8Co0.1Mn0.1O2 battery using the raw micron-sized Si anode with the selectively dissolved SEI retains 83.7% capacity after 150 cycles at 0.5 C (90 mA g-1). The selective dissolution effect for tailoring the SEI, as well as the corresponding cycling life of the Si anodes, is positively related to the donor number of the solvents, which highlights designing high-donor-number electrolytes as a guideline to tailor the SEI for stabilizing volume-changing alloying-type anodes in high-energy rechargeable batteries.

11.
Genes Genomics ; 45(12): 1575-1586, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37843781

RESUMEN

BACKGROUND: Cervical cancer, as one of the most common cancers in women, remains a major health threat worldwide. Annexin A3 (ANXA3), a component of the annexin family, is upregulated in numerous cancers, with no explicit role in cervical cancer. OBJECTIVE: This study aims to investigate the function of ANXA3 in cervical cancer. METHODS: Differential expression genes between the cervical cancer tissues of patients and the controls were analyzed in The Cancer Genome Atlas (TCGA) and Gene Expression Profiling Interactive Analysis (GEPIA) database. Using transfection approaches to either upregulate or downregulate ANXA3, its role in cell proliferation and chemosensitivity of human cervical cancer cell lines (HeLa and C33A) was evaluated. Furthermore, the binding activity between YAP1 and ANXA3 was also explored. RESULTS: Genomics analysis indicated that differential genes were mostly associated with cell cycle progression and DNA replication. ANXA3 was highly expressed in the cervical cancer tissues and closely linked to malignancy degree. Knockdown of ANXA3 in cervical cancer cells inhibited cell cycle progression. A similar result was observed in the reduction of cyclin D, CDK4, cyclin E, and CDK2 in cervical cancer cells with ANXA3 silencing. Cervical cancer cells obtained high sensitivity to cisplatin (DDP) when ANXA3 was downregulated. Conversely, these capabilities were the opposite in cervical cancer cells overexpressing ANXA3. Furthermore, the expression levels of ANXA3 and YAP1 were positively correlated. YAP1 upregulation was positively connected with malignant behaviors, which were reversed by ANXA3 downregulation. CONCLUSION: In light of our findings, targeting ANXA3 expressed in cervical cancer might contribute to more potential therapeutic strategies.


Asunto(s)
Anexina A3 , Neoplasias del Cuello Uterino , Femenino , Humanos , Anexina A3/genética , Anexina A3/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Resistencia a Antineoplásicos/genética , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética
12.
Math Biosci Eng ; 20(8): 13542-13561, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37679101

RESUMEN

Optimization problems are ubiquitous in engineering and scientific research, with a large number of such problems requiring resolution. Meta-heuristics offer a promising approach to solving optimization problems. The firefly algorithm (FA) is a swarm intelligence meta-heuristic that emulates the flickering patterns and behaviour of fireflies. Although FA has been significantly enhanced to improve its performance, it still exhibits certain deficiencies. To overcome these limitations, this study presents the Q-learning based on the adaptive logarithmic spiral-Levy flight firefly algorithm (QL-ADIFA). The Q-learning technique empowers the improved firefly algorithm to leverage the firefly's environmental awareness and memory while in flight, allowing further refinement of the enhanced firefly. Numerical experiments demonstrate that QL-ADIFA outperforms existing methods on 15 benchmark optimization functions and twelve engineering problems: cantilever arm design, pressure vessel design, three-bar truss design problem, and 9 constrained optimization problems in CEC2020.

13.
Int Immunopharmacol ; 122: 110658, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37467691

RESUMEN

The main causative agent of malaria in humans is Plasmodium falciparum, which is spread through biting Anopheles mosquitoes. Immunoregulation in the host involving the pleiotropic cytokine transforming growth factor-ß (TGF-ß) has a vital role in controlling the immune response to P. falciparum infection. Based on a search of the published literature, this study investigated the correlation between malaria and immune cells, specifically the role of TGF-ß in the immune response. The studies analyzed showed that, when present in low amounts, TGF-ß promotes inflammation, but inhibits inflammation when present in high concentrations; thus, it is an essential regulator of inflammation. It has also been shown that the quantity of TGF-ß produced by the host can influence how badly the parasite affects the host. Low levels of TGF-ß in the host prevent the host from being able to manage the inflammation that Plasmodium causes, which results in a pathological situation that leaves the host vulnerable to fatal infection. Additionally, the amount of TGF-ß fluctuates throughout the host's Plasmodium infection. At the beginning of a Plasmodium infection, TGF-ß levels are noticeably increased, and as Plasmodium multiplies quickly, they start to decline, hindering further growth. In addition, it is also involved in the growth, proliferation, and operation of various types of immune cell and correlated with levels of cytokines associated with the immune response to malaria. TGF-ß levels were positively connected with the anti-inflammatory cytokine interleukin-10 (IL-10), but negatively correlated with the proinflammatory cytokines interferon-γ (IFN-γ) and IL-6 in individuals with severe malaria. Thus, TGF-ß might balance immune-mediated pathological damage and the regulation and clearance of infectious pathogens. Numerous domestic and international studies have demonstrated that TGF-ß maintains a dynamic balance between anti-inflammation and pro-inflammation in malaria immunity by acting as an anti-inflammatory factor when inflammation levels are too high and as a pro-inflammatory factor when inflammation levels are deficient. Such information could be of relevance to the design of urgently needed vaccines and medications to meet the emerging risks associated with the increasing spread of malaria and the development of drug resistance.


Asunto(s)
Malaria Falciparum , Malaria , Humanos , Animales , Factor de Crecimiento Transformador beta/metabolismo , Citocinas , Inflamación/complicaciones , Inmunidad , Factores de Crecimiento Transformadores
14.
Angew Chem Int Ed Engl ; 62(33): e202305988, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37339945

RESUMEN

Ether solvents with superior reductive stability promise excellent interphasial stability with high-capacity anodes while the limited oxidative resistance hinders their high-voltage operation. Extending the intrinsic electrochemical stability of ether-based electrolytes to construct stable-cycling high-energy-density lithium-ion batteries is challenging but rewarding. Herein, the anion-solvent interactions were concerned as the key point to optimize the anodic stability of the ether-based electrolytes and an optimized interphase was realized on both pure-SiOx anodes and LiNi0.8 Mn0.1 Co0.1 O2 cathodes. Specifically, the small-anion-size LiNO3 and tetrahydrofuran with high dipole moment to dielectric constant ratio realized strengthened anion-solvent interactions, which enhance the oxidative stability of the electrolyte. The designed ether-based electrolyte enabled a stable cycling performance over 500 cycles in pure-SiOx ||LiNi0.8 Mn0.1 Co0.1 O2 full cell, demonstrating its superior practical prospects. This work provides new insight into the design of new electrolytes for emerging high-energy density lithium-ion batteries through the regulation of interactions between species in electrolytes.

15.
Ecotoxicol Environ Saf ; 256: 114861, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37027943

RESUMEN

The brain barrier is an important structure for metal ion homeostasis. According to studies, lead (Pb) exposure disrupts the transportation of copper (Cu) through the brain barrier, which may cause impairment of the nervous system; however, the specific mechanism is unknown. The previous studies suggested the X-linked inhibitor of apoptosis (XIAP) is a sensor for cellular Cu level which mediate the degradation of the MURR1 domain-containing 1 (COMMD1) protein. XIAP/COMMD1 axis was thought to be an important regulator in Cu metabolism maintenance. In this study, the role of XIAP-regulated COMMD1 protein degradation in Pb-induced Cu disorders in brain barrier cells was investigated. Pb exposure significantly increased Cu levels in both cell types, according to atomic absorption technology testing. Western blotting and reverse transcription PCR (RT-PCR) showed that COMMD1 protein levels were significantly increased, whereas XIAP, ATP7A, and ATP7B protein levels were significantly decreased. However, there were no significant effects at the messenger RNA (mRNA) level (XIAP, ATP7A, and ATP7B). Pb-induced Cu accumulation and ATP7B expression were reduced when COMMD1 was knocked down by transient small interfering RNA (siRNA) transfection. In addition, transient plasmid transfection of XIAP before Pb exposure reduced Pb-induced Cu accumulation, increased COMMD1 protein levels, and decreased ATP7B levels. In conclusion, Pb exposure can reduce XIAP protein expression, increase COMMD1 protein levels, and specifically decrease ATP7B protein levels, resulting in Cu accumulation in brain barrier cells.


Asunto(s)
Cobre , Plomo , Cobre/metabolismo , Plomo/metabolismo , Proteolisis , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Adenosina Trifosfatasas/metabolismo , ARN Interferente Pequeño/metabolismo , Encéfalo/metabolismo
16.
Adv Mater ; 35(24): e2300350, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36990460

RESUMEN

The uncontrollable dendrite growth and unstable solid electrolyte interphase have long plagued the practical application of Li metal batteries. Herein, a dual-layered artificial interphase LiF/LiBO-Ag is demonstrated that is simultaneously reconfigured via an electrochemical process to stabilize the lithium anode. This dual-layered interphase consists of a heterogeneous LiF/LiBO glassy top layer with ultrafast Li-ion conductivity and lithiophilic Li-Ag alloy bottom layer, which synergistically regulates the dendrite-free Li deposition, even at high current densities. As a result, Li||Li symmetric cells with LiF/LiBO-Ag interphase achieve an ultralong lifespan (4500 h) at an ultrahigh current density and area capacity (20 mA cm-2 , 20 mAh cm-2 ). LiF/LiBO-Ag@Li anodes are successfully applied in quasi-solid-state batteries, showing excellent cycling performances in symmetric cells (8 mA cm-2 , 8 mAh cm-2 , 5000 h) and full cells. Furthermore, a practical quasi-solid-state pouch cell coupling with a high-nickel cathode exhibits stable cycling with a capacity retention of over 91% after 60 cycles at 0.5 C, which is comparable or even better than that in liquid-state pouch cells. Additionally, a high-energy-density quasi-solid-state pouch cell (10.75 Ah, 448.7 Wh kg-1 ) is successfully accomplished. This well-orchestrated interphase design provides new guidance in engineering highly stable interphase toward practical high-energy-density lithium metal batteries.

17.
Angew Chem Int Ed Engl ; 62(16): e202300384, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36840689

RESUMEN

In overcoming the Li+ desolvation barrier for low-temperature battery operation, a weakly-solvated electrolyte based on carboxylate solvent has shown promises. In case of an organic-anion-enriched primary solvation sheath (PSS), we found that the electrolyte tends to form a highly swollen, unstable solid electrolyte interphase (SEI) that shows a high permeability to the electrolyte components, accounting for quickly declined electrochemical performance of graphite-based anode. Here we proposed a facile strategy to tune the swelling property of SEI by introducing an inorganic anion switch into the PSS, via LiDFP co-solute method. By forming a low-swelling, Li3 PO4 -rich SEI, the electrolyte-consuming parasitic reactions and solvent co-intercalation at graphite-electrolyte interface are suppressed, which contributes to efficient Li+ transport, reversible Li+ (de)intercalation and stable structural evolution of graphite anode in high-energy Li-ion batteries at a low temperature of -20 °C.

18.
J Liposome Res ; 33(1): 89-101, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35706398

RESUMEN

Ovarian cancer is a serious threat to female health, although the incidence of it is relatively low, its mortality rate remains high due to its intense invasion and metastasis. Therefore, it is urgent to explore new treatment strategies for ovarian cancer. In this study, paclitaxel and emodin were encapsulated in different micelles, and loaded on the surface of the micelles with epidermal growth factor (EGF) as the targeting molecule, made compound formulations in proportion. In this study, EGF-modified paclitaxel micelles and EGF-modified emodin micelles were characterized, their inhibitory effects on SKOV3 cell proliferation and invasion were studied in vivo and in vitro, and its targeting ability was confirmed. The results showed that the shape, particle size, zeta potential, release rate, encapsulation rate, polydispersity index, and other physical and chemical properties of EGF-modified paclitaxel micelles plus EGF-modified emodin micelles meet the requirements, and the modification of EGF on the micelle surface could obviously improve the uptake of SKOV3 cells and inhibit the proliferation of SKOV3 cells. The compound formulation can inhibit the invasion and metastasis of ovarian cancer by inhibiting the expression of hypoxia inducible factor-α, MMP-2, MMP-9, and VE-cadherin. The in vivo studies have also showed significant pharmacodynamics results. These results indicated that EGF-modified paclitaxel micelles plus EGF-modified emodin micelles provide a new strategy for the treatment of ovarian cancer.


Asunto(s)
Emodina , Neoplasias Ováricas , Femenino , Humanos , Paclitaxel/química , Micelas , Factor de Crecimiento Epidérmico/uso terapéutico , Emodina/farmacología , Emodina/uso terapéutico , Línea Celular Tumoral , Liposomas , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología
19.
Front Med (Lausanne) ; 10: 1343407, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38293297

RESUMEN

Low-grade fibromyxoid sarcoma (LGFMS) is a rare soft tissue tumor composed of bland spindled cells in a variably fibrous to myxoid stroma. Its occurrence in the vulva region is rare, and thus, it may not be always taken into account in the differential diagnosis. Here, we describe a 34-year-old woman presented with a right vulvar mass and underwent complete surgical excision. The final pathologic diagnosis revealed LGFMS of the vulva based on the morphological, immunophenotypic, and molecular genetic features. The patient has not experienced a local or metastatic recurrence after 9-month follow-up. Despite being rare, LGFMS of the vulva should be considered when making a diagnosis of vulvar lesions. We also report that the genetic testing by next-generation sequencing (NGS) represents a very useful tool for the differential diagnosis of LGFMS from its mimics. Moreover, we have reviewed the literature on LGFMS of the vulva and summarized the characteristics of the patients, providing assistance for the diagnosis of such patients. Most vulvovaginal LGFMS can be fully removed through surgery. However, ongoing monitoring over the long term is essential as local and/or distant spread can occur decades after the initial diagnosis.

20.
J Am Chem Soc ; 144(40): 18240-18245, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36169321

RESUMEN

In Li-ion batteries, functional cosolvents could significantly improve the specific performance of the electrolyte, for example, the flame retardancy. In case the cosolvent shows strong Li+-coordinating ability, it could adversely influence the electrochemical Li+-intercalation reaction of the electrode. In this work, a noncoordinating functional cosolvent was proposed to enrich the functionality of the electrolyte while avoiding interference with the Li storage process. Hexafluorocyclotriphosphazene, an efficient flame-retardant agent with proper physicochemical properties, was chosen as a cosolvent for preparing functional electrolytes. The nonpolar phosphazene molecules with low electron-donating ability do not coordinate with Li+ and thus are excluded from the primary solvation sheath. In graphite-anode-based Li-ion batteries, the phosphazene molecules do not cointercalate with Li+ into the graphite lattice during the charging process, which helps to maintain integral anode structure and interface and contributes to stable cycling. The noncoordinating cosolvent was also applied to other types of electrode materials and batteries, paving a new way for high-performance electrochemical energy storage systems with customizable functions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA