Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurotox Res ; 40(2): 614-635, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35023054

RESUMEN

The incidence of neurodegenerative diseases and cyanobacterial blooms is concomitantly increasing worldwide. The cyanotoxin ß-N-methylamino-L-alanine (BMAA) is produced by most of the Cyanobacteria spp. This cyanotoxin is described as a potential environmental etiology factor for some sporadic neurodegenerative diseases. Climate change and eutrophication significantly increase the frequency and intensity of cyanobacterial bloom in water bodies. This review evaluates different neuropathological mechanisms of BMAA at molecular and cellular levels and compares the related studies to provide some useful recommendations. Additionally, the structure and properties of BMAA as well as its microbial origin, especially by gut bacteria, are also briefly covered. Unlike previous reviews, we hypothesize the possible neurotoxic mechanism of BMAA through iron overload. We also discuss the involvement of BMAA in excitotoxicity, TAR DNA-binding protein 43 (TDP-43) translocation and accumulation, tauopathy, and other protein misincorporation and misfolding.


Asunto(s)
Aminoácidos Diaminos , Cianobacterias , Ferroptosis , Sobrecarga de Hierro , Enfermedades Neurodegenerativas , Aminoácidos Diaminos/metabolismo , Aminoácidos Diaminos/toxicidad , Cianobacterias/química , Toxinas de Cianobacterias , Humanos , Enfermedades Neurodegenerativas/inducido químicamente , Neurotoxinas/toxicidad
2.
Front Immunol ; 12: 701550, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34194442

RESUMEN

The essential amino acid tryptophan (TRP) is the initiating metabolite of the kynurenine pathway (KP), which can be upregulated by inflammatory conditions in cells. Neuroinflammation-triggered activation of the KP and excessive production of the KP metabolite quinolinic acid are common features of multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). In addition to its role in the KP, genes involved in TRP metabolism, including its incorporation into proteins, and synthesis of the neurotransmitter serotonin, have also been genetically and functionally linked to these diseases. ALS is a late onset neurodegenerative disease that is classified as familial or sporadic, depending on the presence or absence of a family history of the disease. Heritability estimates support a genetic basis for all ALS, including the sporadic form of the disease. However, the genetic basis of sporadic ALS (SALS) is complex, with the presence of multiple gene variants acting to increase disease susceptibility and is further complicated by interaction with potential environmental factors. We aimed to determine the genetic contribution of 18 genes involved in TRP metabolism, including protein synthesis, serotonin synthesis and the KP, by interrogating whole-genome sequencing data from 614 Australian sporadic ALS cases. Five genes in the KP (AFMID, CCBL1, GOT2, KYNU, HAAO) were found to have either novel protein-altering variants, and/or a burden of rare protein-altering variants in SALS cases compared to controls. Four genes involved in TRP metabolism for protein synthesis (WARS) and serotonin synthesis (TPH1, TPH2, MAOA) were also found to carry novel variants and/or gene burden. These variants may represent ALS risk factors that act to alter the KP and lead to neuroinflammation. These findings provide further evidence for the role of TRP metabolism, the KP and neuroinflammation in ALS disease pathobiology.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Predisposición Genética a la Enfermedad/genética , Triptófano/metabolismo , Humanos , Secuenciación Completa del Genoma
3.
Breast Cancer Res ; 22(1): 113, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33109232

RESUMEN

BACKGROUND: Immunotherapy has recently been proposed as a promising treatment to stop breast cancer (BrCa) progression and metastasis. However, there has been limited success in the treatment of BrCa with immune checkpoint inhibitors. This implies that BrCa tumors have other mechanisms to escape immune surveillance. While the kynurenine pathway (KP) is known to be a key player mediating tumor immune evasion and while there are several studies on the roles of the KP in cancer, little is known about KP involvement in BrCa. METHODS: To understand how KP is regulated in BrCa, we examined the KP profile in BrCa cell lines and clinical samples (n = 1997) that represent major subtypes of BrCa (luminal, HER2-enriched, and triple-negative (TN)). We carried out qPCR, western blot/immunohistochemistry, and ultra-high pressure liquid chromatography on these samples to quantify the KP enzyme gene, protein, and activity, respectively. RESULTS: We revealed that the KP is highly dysregulated in the HER2-enriched and TN BrCa subtype. Gene, protein expression, and KP metabolomic profiling have shown that the downstream KP enzymes KMO and KYNU are highly upregulated in the HER2-enriched and TN BrCa subtypes, leading to increased production of the potent immunosuppressive metabolites anthranilic acid (AA) and 3-hydroxylanthranilic acid (3HAA). CONCLUSIONS: Our findings suggest that KMO and KYNU inhibitors may represent new promising therapeutic targets for BrCa. We also showed that KP metabolite profiling can be used as an accurate biomarker for BrCa subtyping, as we successfully discriminated TN BrCa from other BrCa subtypes.


Asunto(s)
Neoplasias de la Mama/patología , Hidrolasas/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina 3-Monooxigenasa/metabolismo , Quinurenina/metabolismo , Redes y Vías Metabólicas , Escape del Tumor , Adulto , Anciano , Biomarcadores de Tumor/sangre , Neoplasias de la Mama/clasificación , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Estudios de Casos y Controles , Línea Celular Tumoral , Estudios de Cohortes , Bases de Datos Genéticas , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Persona de Mediana Edad , Metástasis de la Neoplasia , Estadificación de Neoplasias
4.
Front Neurosci ; 14: 890, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973438

RESUMEN

Neuropathic pain is a common complication of diabetes with high morbidity and poor treatment outcomes. Accumulating evidence suggests the immune system is involved in the development of diabetic neuropathy, whilst neuro-immune interactions involving the kynurenine (KYN) and tetrahydrobiopterin (BH4) pathways have been linked to neuropathic pain pre-clinically and in several chronic pain conditions. Here, using a multiplex assay, we quantified serum levels of 14 cytokines in 21 participants with type 1 diabetes mellitus, 13 of which were classified as having neuropathic pain. In addition, using high performance liquid chromatography and gas chromatography-mass spectrometry, all major KYN and BH4 pathway metabolites were quantified in serum from the same cohort. Our results show increases in GM-CSF and IL-8, suggesting immune cell involvement. We demonstrated increases in two inflammatory biomarkers: neopterin and the KYN/TRP ratio, a marker of indoleamine 2,3-dioxygenase activity. Moreover, the KYN/TRP ratio positively correlated with pain intensity. Total kynurenine aminotransferase activity was also higher in the diabetic neuropathic pain group, indicating there may be increased production of the KYN metabolite, xanthurenic acid. Overall, this study supports the idea that inflammatory activation of the KYN and BH4 pathways occurs due to elevated inflammatory cytokines, which might be involved in the pathogenesis of neuropathic pain in type 1 diabetes mellitus. Further studies should be carried out to investigate the role of KYN and BH4 pathways, which could strengthen the case for therapeutically targeting them in neuropathic pain conditions.

5.
Front Neurosci ; 14: 620, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32694973

RESUMEN

Despite the identification of molecular mechanisms associated with pain persistence, no significant therapeutic improvements have been made. Advances in the understanding of the molecular mechanisms that induce pain hypersensitivity will allow the development of novel, effective, and safe therapies for chronic pain. Various pro-inflammatory cytokines are known to be increased during chronic pain, leading to sustained inflammation in the peripheral and central nervous systems. The pro-inflammatory environment activates additional metabolic routes, including the kynurenine (KYN) and tetrahydrobiopterin (BH4) pathways, which generate bioactive soluble metabolites with the potential to modulate neuropathic and inflammatory pain sensitivity. Inflammation-induced upregulation of indoleamine 2,3-dioxygenase 1 (IDO1) and guanosine triphosphate cyclohydrolase I (GTPCH), both rate-limiting enzymes of KYN and BH4 biosynthesis, respectively, have been identified in experimental chronic pain models as well in biological samples from patients affected by chronic pain. Inflammatory inducible KYN and BH4 pathways upregulation is characterized by increase in pronociceptive compounds, such as quinolinic acid (QUIN) and BH4, in addition to inflammatory mediators such as interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α). As expected, the pharmacologic and genetic experimental manipulation of both pathways confers analgesia. Many metabolic intermediates of these two pathways such as BH4, are known to sustain pain, while others, like xanthurenic acid (XA; a KYN pathway metabolite) have been recently shown to be an inhibitor of BH4 synthesis, opening a new avenue to treat chronic pain. This review will focus on the KYN/BH4 crosstalk in chronic pain and the potential modulation of these metabolic pathways that could induce analgesia without dependence or abuse liability.

6.
J Neuroimmunol ; 347: 577330, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32731051

RESUMEN

We investigated serum levels of 29 cytokines and immune-activated kynurenine and tetrahydrobiopterin pathway metabolites in 15 complex regional pain syndrome (CRPS) subjects and 14 healthy controls. Significant reductions in interleukin-37 and tryptophan were found in CRPS subjects, along with positive correlations between kynurenine/tryptophan ratio and TNF-α levels with kinesiophobia, tetrahydrobiopterin levels with McGill pain score, sRAGE, and xanthurenic acid and neopterin levels with depression, anxiety and stress scores. Using machine learning, we identified a set of binary variables, including IL-37 and GM-CSF, capable of distinguishing controls from established CRPS subjects. These results suggest possible involvement of various inflammatory markers in CRPS pathogenesis.


Asunto(s)
Síndromes de Dolor Regional Complejo/diagnóstico , Síndromes de Dolor Regional Complejo/inmunología , Interleucina-1/inmunología , Quinurenina/inmunología , Triptófano/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Adulto , Anciano , Biomarcadores/sangre , Síndromes de Dolor Regional Complejo/sangre , Femenino , Humanos , Interleucina-1/sangre , Quinurenina/sangre , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Proyectos Piloto , Triptófano/sangre , Factor de Necrosis Tumoral alfa/sangre
7.
Int J Tryptophan Res ; 13: 1178646920978404, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33447046

RESUMEN

The crosstalk between central nervous system (CNS) and gut microbiota plays key roles in neuroinflammation and chronic immune activation that are common features of all neurodegenerative diseases. Imbalance in the microbiota can lead to an increase in the intestinal permeability allowing toxins to diffuse and reach the CNS, as well as impairing the production of neuroprotective metabolites such as sodium butyrate (SB) and indole-3-propionic acid (IPA). The aim of the present study was to evaluate the effect of SB and IPA on LPS-induced production of cytokines and tryptophan metabolites in human astrocytes. Primary cultures of human astrocytes were pre-incubated with SB or IPA for 1 hour before treatment with LPS. Cell viability was not affected at 24, 48 or 72 hours after pre-treatment with SB, IPA or LPS treatment. SB was able to significantly prevent the increase of GM-CSF, MCP-1, IL-6 IL-12, and IL-13 triggered by LPS. SB and IPA also prevented inflammation indicated by the increase in kynurenine and kynurenine/tryptophan ratio induced by LPS treatment. IPA pre-treatment prevented the LPS-induced increase in MCP-1, IL-12, IL-13, and TNF-α levels 24 hours after pre-treatment, but had no effect on tryptophan metabolites. The present study showed for the first time that bacterial metabolites SB and IPA have potential anti-inflammatory effect on primary human astrocytes with potential therapeutic benefit in neurodegenerative disease characterized by the presence of chronic low-grade inflammation.

8.
Front Neurosci ; 13: 1013, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31616242

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) currently lacks a robust and well-defined biomarker that can 1) assess the progression of the disease, 2) predict and/or delineate the various clinical subtypes, and 3) evaluate or predict a patient's response to treatments. The kynurenine Pathway (KP) of tryptophan degradation represent a promising candidate as it is involved with several neuropathological features present in ALS including neuroinflammation, excitotoxicity, oxidative stress, immune system activation and dysregulation of energy metabolism. Some of the KP metabolites (KPMs) can cross the blood brain barrier, and many studies have shown their levels are dysregulated in major neurodegenerative diseases including ALS. The KPMs can be easily analyzed in body fluids and tissue and as they are small molecules, and are stable. KPMs have a Janus face action, they can be either or both neurotoxic and/or neuroprotective depending of their levels. This mini review examines and presents evidence supporting the use of KPMs as a relevant set of biomarkers for ALS, and highlights the criteria required to achieve a valid biomarker set for ALS.

9.
Neurotox Res ; 33(1): 55-61, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28852990

RESUMEN

We show for the first time that a newly developed polyclonal antibody (pAb) can specifically target the cyanotoxin ß-methylamino-L-alanine (BMAA) and can be used to enable direct visualization of BMAA entry and accumulation in primary brain cells. We used this pAb to investigate the effect of acute and chronic accumulation, and toxicity of both BMAA and its natural isomer 2,4-diaminobutyric acid (DAB), separately or in combination, on primary cultures of rat neurons. We further present evidence that co-treatment with BMAA and DAB increased neuronal death, as measured by MAP2 fluorescence level, and appeared to reduce BMAA accumulation. DAB is likely to be acting synergistically with BMAA resulting in higher level of cellular toxicity. We also found that glial cells such as microglia and astrocytes are also able to directly uptake BMAA indicating that additional brain cell types are affected by BMAA-induced toxicity. Therefore, BMAA clearly acts at multiple cellular levels to possibly increase the risk of developing neurodegenerative diseases, including neuro- and gliotoxicity and synergetic exacerbation with other cyanotoxins.


Asunto(s)
Aminoácidos Diaminos/análisis , Astrocitos/metabolismo , Neuronas/metabolismo , Neurotoxinas/análisis , Aminoácidos Diaminos/farmacología , Animales , Astrocitos/efectos de los fármacos , Encéfalo/citología , Células Cultivadas , Toxinas de Cianobacterias , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/efectos de los fármacos , Neurotoxinas/toxicidad , Ratas , Ratas Sprague-Dawley
10.
Neurotox Res ; 33(1): 62-75, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28842862

RESUMEN

ß-Methylamino-L-alanine (BMAA) is implicated in neurodegeneration and neurotoxicity, particularly in ALS-Parkinson Dementia Complex. Neurotoxic properties of BMAA have been partly elucidated, while its transcellular spreading capacity has not been examined. Using reconstructed neuronal networks in microfluidic chips, separating neuronal cells into two subcompartments-(1) the proximal, containing first-order neuronal soma and dendrites, and (2) a distal compartment, containing either only axons originating from first-order neurons or second-order striatal neurons-creates a cortico-striatal network. Using this system, we investigated the toxicity and spreading of BMAA in murine primary neurons. We used a newly developed antibody to detect BMAA in cells. After treatment with 10 µM BMAA, the cyanotoxin was incorporated in first-degree neurons. We also observed a rapid trans-neuronal spread of BMAA to unexposed second-degree neurons in 48 h, followed by axonal degeneration, with limited somatic death. This in vitro study demonstrates BMAA axonal toxicity at sublethal concentrations and, for the first time, the transcellular spreading abilities of BMAA. This neuronal dying forward spread that could possibly be associated with progression of some neurodegenerative diseases especially amyotrophic lateral sclerosis.


Asunto(s)
Aminoácidos Diaminos/toxicidad , Axones/efectos de los fármacos , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/patología , Neuronas/efectos de los fármacos , Neurotoxinas/toxicidad , Análisis de Varianza , Animales , Axones/patología , Encéfalo/citología , Células Cultivadas , Toxinas de Cianobacterias , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos , Proteína Ácida Fibrilar de la Glía/metabolismo , Dispositivos Laboratorio en un Chip , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Red Nerviosa/efectos de los fármacos , Red Nerviosa/metabolismo , Neuronas/citología , Transcitosis/efectos de los fármacos , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...