Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 2796, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37202399

RESUMEN

Precipitation whiplash, including abrupt shifts between wet and dry extremes, can cause large adverse impacts on human and natural systems. Here we quantify observed and projected changes in characteristics of sub-seasonal precipitation whiplash and investigate the role of individual anthropogenic influences on these changes. Results show that the occurrence frequency of global precipitation whiplash is projected to be 2.56 ± 0.16 times higher than in 1979-2019 by the end of the 21st Century, with increasingly rapid and intense transitions between two extremes. The most dramatic increases of whiplash show in the polar and monsoon regions. Changes in precipitation whiplash show a much higher percentage change than precipitation totals. In historical simulations, anthropogenic greenhouse gas (GHG) and aerosol emissions have increased and decreased precipitation whiplash occurrences, respectively. By 2079, anthropogenic GHGs are projected to increase 55 ± 4% of the occurrences risk of precipitation whiplash, which is driven by shifts in circulation patterns conducive to precipitation extremes.

2.
Sci Total Environ ; 853: 158555, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36075425

RESUMEN

Moderate tropical cyclone precipitation (TCP) is of great significance to regional water resource supply, while extreme TCP could bring significant adverse impacts to ecosystems and society, especially when tropical cyclones intensify rapidly, leaving no time to take prevention actions. Whether rapid intensification (RI) of tropical cyclones (TCs) affect TCP in both land and ocean remains unknown. Here we classified TCs which have undergone increases in the maximum sustained wind speed (MSW) by at least 30 knots within 24-h into RI category. We analyzed TCP totals provided by daily precipitation from Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) and spatial extent from 1983 to 2019 in the four categories based on regions (land and ocean) and RI-experiencing characteristics (with- and without-RI). TCP totals and spatial extent was identified by the restricted moving neighborhood method and semi-variogram framework. The results show that TCP totals on the ocean are larger than those on the land, since RI-experiencing TCP are higher than TCP without RI-experiencing, although RI processes tend to increase TCP totals in the extremely high percentiles more significantly on land than ocean. The effects of RI processes on global TCP spatial extent are not statistically significant, and there are no definite relations between MSW and TCP spatial extent. The four regions of the Northeast Pacific Ocean (EP), South Pacific Ocean (SP), Northwest Pacific Ocean (WP), and North Atlantic Ocean (NA) show increases in regional mean and extreme TCP totals. The highest increase in the extreme TCP totals (0.37 mm day-1 year-1) over the NA region occurs in the RI_ocean category, which is 2.6 times the average positive enhancement trend across all basins. The increasing rate of the extreme TCP totals over the WP region is higher in track points with RI-experiencing than without RI-experiencing. The category of RI_land over the regions of NA, EP and SP shows a significant increase in the regional mean TCP spatial extent.


Asunto(s)
Tormentas Ciclónicas , Ecosistema , Océano Atlántico , Viento , Clima
3.
Sci Total Environ ; 848: 157427, 2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-35905954

RESUMEN

Flash drought is characterized by a rapid rate of onset and intensification within a few weeks. It usually accompanies exhausted soil moisture and high-temperature stress and exerts detrimental impacts on the growth of crops and the ecosystem. However, the global occurrence characteristics of flash drought in the recent four decades remain unclear. This study analyzes the spatiotemporal variability of flash drought identified by rapid decreases in the standardized evaporative stress ratio (SESR) from 1981 to 2020 and investigates their meteorological drivers. Results show that the flash drought mainly occurred in middle and low latitude areas. The coverage of flash drought showed a statistically significant decrease during 1981-2020. With the year of 2000 as a turning point, the coverage of flash drought trend reversed from a significant decline to a significant rise. Flash drought has no noticeable seasonal change. With the increase of the intensity of flash drought, the proportion of flash drought gradually decreased. Slight flash drought (FD_1; 50.9 %) is seven times of extreme flash drought (FD_4). The analysis of the evolution of hydro-meteorological variables concurrent with the global flash drought shows that flash drought was more triggered by abnormally low precipitation, soil moisture, evapotranspiration, and high temperature. In addition, the anomaly gradually increases with the increase of intensity. Water deficit is an important factor affecting the occurrence of flash drought, and only 10.9 % of flash drought events occurred in both positive soil moisture and precipitation anomalies. The results reference future research on flash drought on various spatial scales under a changing climate.


Asunto(s)
Sequías , Ecosistema , Cambio Climático , Suelo , Agua
4.
Sci Total Environ ; 767: 144863, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33450592

RESUMEN

The water resource of the Blue Nile River basin (BNRB) has been under pressure due to growing demands from many users, and the climate change impact. Potential impact of climate change for the maximum, median and minimum projected changes in the simulated streamflow of BNRB by a hydrologic model, VIC, driven by Representative Concentration Pathways climate scenarios, RCP4.5 and RCP8.5, of 4 GCMs (global climate models) downscaled dynamically by a regional climate model, WRF (Weather Research Forecasting) using a one-domain framework that covers the entire NRB for 2041-2070 and 2071-2100. These projected changes in streamflow were used to assess its future water allocations using a stochastic Dual Dynamic Programming (SDDP) algorithm and a hydro-economic model to optimize hydropower production and irrigated agriculture. Overall, it seems the Grand Ethiopian Renaissance Dam (GERD) reservoir will likely not operate at full storage level because the streamflow of BNRB is assumed to be regulated by three upstream reservoirs. The outflow from the reservoir of GERD or BNRB's annual flow at Khartoum is projected to increase under maximum, but is expected to decrease under minimum and median projected changes in streamflow for 2041-2070 and 2071-2100, respectively. Given the annual net benefit obtained from hydropower production and irrigated agriculture of the reservoir is projected to increase (decrease) under the maximum (median and minimum) projected changes in streamflow, the potential climate change impact should be considered in designing and developing the future water resources of BNRB.

5.
Sensors (Basel) ; 18(8)2018 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-30081529

RESUMEN

This paper considers interference management and capacity improvement for Internet of Things (IoT) oriented two-tier networks by exploiting cognition between network tiers with interference alignment (IA). More specifically, we target our efforts on the next generation two-tier networks, where a tier of femtocell serving multiple IoT devices shares the licensed spectrum with a tier of pre-existing macrocell via a cognitive radio. Aiming to manage the cross-tier interference caused by cognitive spectrum sharing as well as ensure an optimal capacity of the femtocell, two novel self-organizing cognitive IA schemes are proposed. First, we propose an interference nulling based cognitive IA scheme. In such a scheme, both co-tier and cross-tier interferences are aligned into the orthogonal subspace at each IoT receiver, which means all the interference can be perfectly eliminated without causing any performance degradation on the macrocell. However, it is known that the interference nulling based IA algorithm achieves its optimum only in high signal to noise ratio (SNR) scenarios, where the noise power is negligible. Consequently, when the imposed interference-free constraint on the femtocell can be relaxed, we also present a partial cognitive IA scheme that further enhances the network performance under a low and intermediate SNR. Additionally, the feasibility conditions and capacity analyses of the proposed schemes are provided. Both theoretical and numerical results demonstrate that the proposed cognitive IA schemes outperform the traditional orthogonal precoding methods in terms of network capacity, while preserving for macrocell users the desired quality of service.

6.
Glob Chang Biol ; 24(10): 4696-4708, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29802780

RESUMEN

Human and natural systems have adapted to and evolved within historical climatic conditions. Anthropogenic climate change has the potential to alter these conditions such that onset of unprecedented climatic extremes will outpace evolutionary and adaptive capabilities. To assess whether and when future climate extremes exceed their historical windows of variability within impact-relevant socioeconomic, geopolitical, and ecological domains, we investigate the timing of perceivable changes (time of emergence; TOE) for 18 magnitude-, frequency-, and severity-based extreme temperature (10) and precipitation (8) indices using both multimodel and single-model multirealization ensembles. Under a high-emission scenario, we find that the signal of frequency- and severity-based temperature extremes is projected to rise above historical noise earliest in midlatitudes, whereas magnitude-based temperature extremes emerge first in low and high latitudes. Precipitation extremes demonstrate different emergence patterns, with severity-based indices first emerging over midlatitudes, and magnitude- and frequency-based indices emerging earliest in low and high latitudes. Applied to impact-relevant domains, simulated TOE patterns suggest (a) unprecedented consecutive dry day occurrence in >50% of 14 terrestrial biomes and 12 marine realms prior to 2100, (b) earlier perceivable changes in climate extremes in countries with lower per capita GDP, and (c) emergence of severe and frequent heat extremes well-before 2030 for the 590 most populous urban centers. Elucidating extreme-metric and domain-type TOE heterogeneities highlights the challenges adaptation planners face in confronting the consequences of elevated twenty-first century radiative forcing.


Asunto(s)
Cambio Climático , Ecosistema , Adaptación Fisiológica , Predicción , Humanos , Tiempo , Tiempo (Meteorología)
7.
Sensors (Basel) ; 16(7)2016 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-27447644

RESUMEN

Cognitive radio can significantly improve the spectrum efficiency, and spectrum handoff is considered as an important functionality to guarantee the quality of service (QoS) of primary users (PUs) and the continuity of data transmission of secondary users (SUs). In this paper, we propose an analytical framework based on a preemptive repeat identical (PRI) M/G/1 queuing network model to characterize spectrum handoff behaviors with general service time distribution of both primary and secondary connections, multiple interruptions and transmission delay resulting from the appearance of primary connections. Then, we derive the close-expression of the extended data delivery and the system sojourn time in both staying and changing scenarios. In addition, based on analysis of spectrum handoff behaviors resulting from multiple interruptions caused by the appearance of the primary connections, we investigate the traffic-adaptive policy, by which the considered SU will optimally adjust its handoff spectrum policy. Moreover, we investigate the admissible region and provide the reference for designing the admission control rule for the arriving secondary connection requests. Finally, simulation results verify that our proposed analytical framework is reasonable and can provide the reference for executing the optimal spectrum handoff strategy and designing the admission control rule for the SU in cognitive radio networks.

8.
Sci Rep ; 5: 17767, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26634433

RESUMEN

Climate change exerts great influence on streamflow by changing precipitation, temperature, snowpack and potential evapotranspiration (PET), while human activities in a watershed can directly alter the runoff production and indirectly through affecting climatic variables. However, to separate contribution of anthropogenic and natural drivers to observed changes in streamflow is non-trivial. Here we estimated the direct influence of human activities and climate change effect to changes of the mean annual streamflow (MAS) of 96 Canadian watersheds based on the elasticity of streamflow in relation to precipitation, PET and human impacts such as land use and cover change. Elasticities of streamflow for each watershed are analytically derived using the Budyko Framework. We found that climate change generally caused an increase in MAS, while human impacts generally a decrease in MAS and such impact tends to become more severe with time, even though there are exceptions. Higher proportions of human contribution, compared to that of climate change contribution, resulted in generally decreased streamflow of Canada observed in recent decades. Furthermore, if without contributions from retreating glaciers to streamflow, human impact would have resulted in a more severe decrease in Canadian streamflow.


Asunto(s)
Cambio Climático , Monitoreo del Ambiente , Actividades Humanas , Movimientos del Agua , Canadá , Humanos , Modelos Teóricos , Ríos , Estaciones del Año , Temperatura
9.
Sensors (Basel) ; 13(4): 5251-72, 2013 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-23604027

RESUMEN

The performance of cooperative spectrum sensing in cognitive radio (CR) networks depends on the sensing mode, the sensing time and the number of cooperative users. In order to improve the sensing performance and reduce the interference to the primary user (PU), a periodic cooperative spectrum sensing model based on weight fusion is proposed in this paper. Moreover, the sensing period, the sensing time and the searching time are optimized, respectively. Firstly the sensing period is optimized to improve the spectrum utilization and reduce the interference, then the joint optimization algorithm of the local sensing time and the number of cooperative users, is proposed to obtain the optimal sensing time for improving the throughput of the cognitive radio user (CRU) during each period, and finally the water-filling principle is applied to optimize the searching time in order to make the CRU find an idle channel within the shortest time. The simulation results show that compared with the previous algorithms, the optimal sensing period can improve the spectrum utilization of the CRU and decrease the interference to the PU significantly, the optimal sensing time can make the CRU achieve the largest throughput, and the optimal searching time can make the CRU find an idle channel with the least time.

10.
Water Sci Technol ; 66(3): 487-93, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22744677

RESUMEN

In this study, a model for assessing urban water security is developed using an evaluation method of catastrophe theory. To overcome the defects of the traditional catastrophe evaluation method, two aspects of improvement are assessed. One is expanding the scope of application of the traditional catastrophe approach, i.e., new normalization formulae for five lower level indicators contained in the index at the higher level is proposed in theory. The other is solving the problem that the synthetic values are generally high and the differences are not obvious based on the theories of Cramer's Rule and Vander monde determinant. The assessment results in Wuhan city are in good agreement with the actual situation. The comparison between the results of the improved method and a fuzzy comprehensive evaluation method verifies the science and reliability of the developed method. Consequently, it is concluded that the improved method can be an effective tool for assessment of urban water security and provide a valuable reference for improving inadequacies in urban water security.


Asunto(s)
Ciudades , Modelos Teóricos , Medición de Riesgo/métodos , Abastecimiento de Agua , China , Lógica Difusa , Geografía , Estándares de Referencia
11.
Water Sci Technol ; 66(1): 79-87, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22678203

RESUMEN

To evaluate water security, the Water Resources Sustainability Evaluation Model has been developed. The model employs four criteria (economic development, flood control security, water supply security, and water environment security) and has 22 indicators, integrating them using their relative weights. The model is applied to evaluate the water security of Wuhan urban agglomeration, China. The values of the indicators are normalized using the exponential efficacy functions based on the law of diminishing marginal utility. The evaluation results show that, overall, the state of water security in Wuhan urban agglomeration is good, which is in good agreement with the true situation. The comparison between the results of the model and other three evaluation methods by the Spearman coefficient of rank correlation verifies the science and reliability of the developed model. Consequently, it is concluded that the model can be an effective tool for evaluating the states of water security and provide a basis on which to create policies for improving inadequacies in water security.


Asunto(s)
Ciudades , Abastecimiento de Agua , China , Simulación por Computador , Conservación de los Recursos Naturales , Monitoreo del Ambiente , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA