Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Transl Med ; 13(12): e1514, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38115701

RESUMEN

BACKGROUND: IGH::DUX4 is frequently observed in 4% B-cell acute lymphoblastic leukaemia patients. Regarding the IGH::DUX4-driven transactivation and alternative splicing, which are the main reasons behind this acute leukaemia outbreak, it remains unclear how transcriptional cofactors contribute to this oncogenic process. Further investigation is required to elucidate their specific role in leukaemogenesis. METHODS: In order to investigate the cofactors of IGH::DUX4, integrated mining of Chromatin immunoprecipitation (ChIP)-sequencing and RNA-sequencing of leukaemia cells and patient samples were conducted. Furthermore, to elucidate the synergistic interaction between transcription factor 12 (TCF12) and IGH::DUX4, knockdown and knockout experiment, mammalian two-hybridisation assay, co-immunoprecipitation and in situ proximity ligation assays were carried out. Additionally, to further investigate the direct interaction between TCF12 and IGH::DUX4, AI-based structural simulations were utilised. Finally, to validate the synergistic role of TCF12 in promoting IGH::DUX4 leukaemia, cell proliferation, apoptosis and drug sensitivity experiments were performed. RESULTS: In this study, we observed that the IGH::DUX4 target gene TCF12 might be an important cofactor/helper for this oncogenic driver. The co-expression of IGH::DUX4 and TCF12 resulted in enhanced DUX4-driven transactivation. Supportively, knockdown and knockout of TCF12 significantly reduced expression of IGH::DUX4-driven target genes in leukaemia REH (a precursor B-cell leukaemia cell line) and NALM-6 cells (a precursor B-cell leukaemia cell line). Consistently, in TCF12 knockout cells, the expression of structure-based TCF12 mutant, but not wild-type TCF12, failed to restore the TCF12-IGH::DUX4 crosstalk and the synergistic transactivation. More importantly, the breakdown in TCF12-IGH::DUX4 cooperation impaired IGH::DUX4-driven leukaemia cell survival, caused sensitivity to the chemotherapy. CONCLUSIONS: Altogether, these results helped to define a previously unrecognised TCF12-mediated positive self-feedback regulatory mechanism in IGH::DUX4 leukaemia, which holds the potential to function as a pivotal drug target for the management of this particular form of leukaemia. HIGHLIGHTS: Transcription factor 12 (TCF12) is a new novel cofactor in IGH::DUX4 transcriptional complexes/machinery. TCF12 mediates a positive self-feedback regulatory mechanism in IGH::DUX4-driven oncogenic transaction. IGH::DUX4-TCF12 structure/cooperation might represent a potent target/direction in future drug design against B-cell acute lymphoblastic leukaemia.


Asunto(s)
Leucemia de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Animales , Humanos , Retroalimentación , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Línea Celular , Carcinogénesis/genética , Mamíferos
2.
Trends Cancer ; 9(10): 855-870, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37407363

RESUMEN

The biological regulation of transcription factors (TFs) and repressor proteins is an important mechanism for maintaining cell homeostasis. In B cell acute lymphoblastic leukemia (B-ALL) TF abnormalities occur at high frequency and are often recognized as the major driving factor in carcinogenesis. We provide an in-depth review of molecular mechanisms of six major TF rearrangements in B-ALL, including DUX4-rearranged (DUX4-R), MEF2D-R, ZNF384-R, ETV6-RUNX1 and TCF3-PBX1 fusions, and KMT2A-R. In addition, the therapeutic options and prognoses for patients who harbor these TF abnormalities are discussed. This review aims to provide an up-to-date panoramic view of how TF-based oncogenic fusions might drive carcinogenesis and impact on potential therapeutic exploration of B-ALL treatments.


Asunto(s)
Proteínas de Fusión Oncogénica , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Factores de Transcripción/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Pronóstico , Carcinogénesis/genética
3.
FASEB J ; 37(6): e22986, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37219517

RESUMEN

PML nuclear body (NB) malfunction often leads to acute leukemia outbreaks and other severe diseases. PML NB rescue is the molecular basis of arsenic success in acute promyelocytic leukemia (APL) treatment. However, it is unclear how PML NBs are assembled. Here, we observed the presence of liquid-liquid phase separation (LLPS) in NB formation by fluorescence recovery after photobleaching (FRAP) experiment. Compared with the wild-type (WT) NBs, PML A216V derived from arsenic-resistant leukemia patients markedly crippled LLPS, but not altered the overall structure and PML RBCC oligomerization. In parallel, we also reported several Leu to Pro mutations that were critical to PML coiled-coil domain. FRAP characterization and comparison between L268P and A216V revealed markedly different LLPS activities in these mutant NBs. Transmission electron microscopy (TEM) inspections of LLPS-crippled and uncrippled NBs showed aggregation- and ring-like PML packing in A216V and WT/L268P NBs, respectively. More importantly, the correct LLPS-driven NB formation was the prerequisite for partner recruitment, post-translational modifications (PTMs), and PML-driven cellular regulations, such as ROS stress control, mitochondria production, and PML-p53-mediated senescence and apoptosis. Altogether, our results helped to define a critical LLPS step in PML NB biogenesis.


Asunto(s)
Arsénico , Leucemia , Humanos , Apoptosis , Cuerpos Nucleares de la Leucemia Promielocítica
4.
Cell Discov ; 8(1): 135, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36543774

RESUMEN

Endogenous ions play important roles in the function and pharmacology of G protein-coupled receptors (GPCRs) with limited atomic evidence. In addition, compared with G protein subtypes Gs, Gi/o, and Gq/11, insufficient structural evidence is accessible to understand the coupling mechanism of G12/13 protein by GPCRs. Orphan receptor GPR35, which is predominantly expressed in the gastrointestinal tract and is closely related to inflammatory bowel diseases (IBDs), stands out as a prototypical receptor for investigating ionic modulation and G13 coupling. Here we report a cryo-electron microscopy structure of G13-coupled GPR35 bound to an anti-allergic drug, lodoxamide. This structure reveals a novel divalent cation coordination site and a unique ionic regulatory mode of GPR35 and also presents a highly positively charged binding pocket and the complementary electrostatic ligand recognition mode, which explain the promiscuity of acidic ligand binding by GPR35. Structural comparison of the GPR35-G13 complex with other G protein subtypes-coupled GPCRs reveals a notable movement of the C-terminus of α5 helix of the Gα13 subunit towards the receptor core and the least outward displacement of the cytoplasmic end of GPR35 TM6. A featured 'methionine pocket' contributes to the G13 coupling by GPR35. Together, our findings provide a structural basis for divalent cation modulation, ligand recognition, and subsequent G13 protein coupling of GPR35 and offer a new opportunity for designing GPR35-targeted drugs for the treatment of IBDs.

5.
Mol Cell ; 82(14): 2681-2695.e6, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35714614

RESUMEN

Serotonin (or 5-hydroxytryptamine, 5-HT) is an important neurotransmitter that activates 12 different G protein-coupled receptors (GPCRs) through selective coupling of Gs, Gi, or Gq proteins. The structural basis for G protein subtype selectivity by these GPCRs remains elusive. Here, we report the structures of the serotonin receptors 5-HT4, 5-HT6, and 5-HT7 with Gs, and 5-HT4 with Gi1. The structures reveal that transmembrane helices TM5 and TM6 alternate lengths as a macro-switch to determine receptor's selectivity for Gs and Gi, respectively. We find that the macro-switch by the TM5-TM6 length is shared by class A GPCR-G protein structures. Furthermore, we discover specific residues within TM5 and TM6 that function as micro-switches to form specific interactions with Gs or Gi. Together, these results present a common mechanism of Gs versus Gi protein coupling selectivity or promiscuity by class A GPCRs and extend the basis of ligand recognition at serotonin receptors.


Asunto(s)
Receptores Acoplados a Proteínas G , Serotonina , Proteínas de Unión al GTP/metabolismo , Ligandos , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo
6.
Cell Discov ; 8(1): 50, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35610220

RESUMEN

5-hydroxytryptamine receptor 5A (5-HT5A) belongs to the 5-HT receptor family and signals through the Gi/o protein. It is involved in nervous system regulation and an attractive target for the treatment of psychosis, depression, schizophrenia, and neuropathic pain. 5-HT5A is the only Gi/o-coupled 5-HT receptor subtype lacking a high-resolution structure, which hampers the mechanistic understanding of ligand binding and Gi/o coupling for 5-HT5A. Here we report a cryo-electron microscopy structure of the 5-HT5A-Gi complex bound to 5-Carboxamidotryptamine (5-CT). Combined with functional analysis, this structure reveals the 5-CT recognition mechanism and identifies the receptor residue at 6.55 as a determinant of the 5-CT selectivity for Gi/o-coupled 5-HT receptors. In addition, 5-HT5A shows an overall conserved Gi protein coupling mode compared with other Gi/o-coupled 5-HT receptors. These findings provide comprehensive insights into the ligand binding and G protein coupling of Gi/o-coupled 5-HT receptors and offer a template for the design of 5-HT5A-selective drugs.

7.
Cell Discov ; 8(1): 44, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35570218

RESUMEN

Chemokine receptors are a family of G-protein-coupled receptors with key roles in leukocyte migration and inflammatory responses. Here, we present cryo-electron microscopy structures of two human CC chemokine receptor-G-protein complexes: CCR2 bound to its endogenous ligand CCL2, and CCR3 in the apo state. The structure of the CCL2-CCR2-G-protein complex reveals that CCL2 inserts deeply into the extracellular half of the transmembrane domain, and forms substantial interactions with the receptor through the most N-terminal glutamine. Extensive hydrophobic and polar interactions are present between both two chemokine receptors and the Gα-protein, contributing to the constitutive activity of these receptors. Notably, complemented with functional experiments, the interactions around intracellular loop 2 of the receptors are found to be conserved and play a more critical role in G-protein activation than those around intracellular loop 3. Together, our findings provide structural insights into chemokine recognition and receptor activation, shedding lights on drug design targeting chemokine receptors.

9.
Mol Cell ; 81(6): 1147-1159.e4, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33548201

RESUMEN

The dopamine system, including five dopamine receptors (D1R-D5R), plays essential roles in the central nervous system (CNS), and ligands that activate dopamine receptors have been used to treat many neuropsychiatric disorders. Here, we report two cryo-EM structures of human D3R in complex with an inhibitory G protein and bound to the D3R-selective agonists PD128907 and pramipexole, the latter of which is used to treat patients with Parkinson's disease. The structures reveal agonist binding modes distinct from the antagonist-bound D3R structure and conformational signatures for ligand-induced receptor activation. Mutagenesis and homology modeling illuminate determinants of ligand specificity across dopamine receptors and the mechanisms for Gi protein coupling. Collectively our work reveals the basis of agonist binding and ligand-induced receptor activation and provides structural templates for designing specific ligands to treat CNS diseases targeting the dopaminergic system.


Asunto(s)
Microscopía por Crioelectrón , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Modelos Moleculares , Complejos Multiproteicos/ultraestructura , Receptores de Dopamina D3/química , Benzopiranos/química , Células HEK293 , Humanos , Complejos Multiproteicos/química , Oxazinas/química , Pramipexol/química , Dominios Proteicos , Relación Estructura-Actividad
10.
Nat Commun ; 11(1): 4121, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32807782

RESUMEN

Vasoactive intestinal polypeptide receptor (VIP1R) is a widely expressed class B G protein-coupled receptor and a drug target for the treatment of neuronal, metabolic, and inflammatory diseases. However, our understanding of its mechanism of action and the potential of drug discovery targeting this receptor is limited by the lack of structural information of VIP1R. Here we report a cryo-electron microscopy structure of human VIP1R bound to PACAP27 and Gs heterotrimer, whose complex assembly is stabilized by a NanoBiT tethering strategy. Comparison with other class B GPCR structures reveals that PACAP27 engages VIP1R with its N-terminus inserting into the ligand binding pocket at the transmembrane bundle of the receptor, which subsequently couples to the G protein in a receptor-specific manner. This structure has provided insights into the molecular basis of PACAP27 binding and VIP receptor activation. The methodology of the NanoBiT tethering may help to provide structural information of unstable complexes.


Asunto(s)
Microscopía por Crioelectrón/métodos , Proteínas de Unión al GTP/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Tipo I del Polipéptido Intestinal Vasoactivo/metabolismo , Dispersión Dinámica de Luz , Humanos , Microscopía Electrónica , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...