Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 4853, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418490

RESUMEN

Chromium (Cr(VI)) pollution has attracted wide attention due to its high toxicity and carcinogenicity. Modified biochar has been widely used in the removal of Cr(VI) in water as an efficient and green adsorbent. However, the existing biochar prepared by chemical modification is usually complicated in process, high in cost, and has secondary pollution, which limits its application. It is urgent to explore modified biochar with simple process, low cost and environmental friendliness. Therefore, ball milling wheat straw biochar (BM-WB) was prepared by ball milling technology in this paper. The adsorption characteristics and mechanism of Cr(VI) removal by BM-WB were analyzed by functional group characterization, adsorption model and response surface method. The results showed that ball milling effectively reduced the particle size of biochar, increased the specific surface area, and more importantly, enhanced the content of oxygen-containing functional groups on the surface of biochar. After ball milling, the adsorption capacity of Cr(VI) increased by 3.5-9.1 times, and the adsorption capacity reached 52.21 mg/g. The adsorption behavior of Cr(VI) follows the pseudo-second-order kinetics and Langmuir isotherm adsorption model rate. Moreover, the Cr(VI) adsorption process of BM-WB is endothermic and spontaneous. Under the optimized conditions of pH 2, temperature 45 °C, and adsorbent dosage 0.1 g, the removal rate of Cr(VI) in the solution can reach 100%. The mechanism of Cr(VI) adsorption by BM-WB is mainly based on electrostatic attraction, redox and complexation. Therefore, ball milled biochar is a cheap, simple and efficient Cr(VI) removal material, which has a good application prospect in the field of remediation of Cr(VI) pollution in water.

2.
PLoS One ; 19(2): e0298548, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38394217

RESUMEN

Environmental protection talents training (EPTT) is recognized as a key prerequisite for maintaining environmental sustainability, and in order to study the influence of each player on EPTT. This paper innovatively constructs a tripartite evolutionary game model of government, university and enterprise. The equilibrium points and evolutionary stabilization strategies of each participant are solved by replicating the dynamic equations, and the behaviors of each subject in EPTT are analyzed so as to clarify the behavioral characteristics and optimal strategies of the government's participation in EPTT. The results show that enterprises occupy a more important position in influencing government decisions. The government should reduce the financial incentives for enterprises and replace them with greater policy support. Meanwhile, the government should actively promote the cultivation mechanism that integrates universities and enterprises. The results of the study can provide a decision-making basis for the government to promote the sustainable development of EPTT.


Asunto(s)
Conservación de los Recursos Naturales , Desarrollo Sostenible , Humanos , Universidades , Evolución Biológica , Gobierno , China , Teoría del Juego
3.
Sci Rep ; 13(1): 21174, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040771

RESUMEN

In this study, modified biochar (BRB) was prepared from rice straw by ball milling technique and used for the adsorption of methylene blue (MB) in wastewater. The BRB was characterized by SEM, FTIR and XPS, and the adsorption model and Box-Behnken design were used to optimize the five influencing factors. The results showed that the ball milling technique could increase the content of functional groups (-OH, C=C and C-O, etc.) and aromatic structures on the surface of biochar, thus facilitating the removal of MB. The isotherm model was consistent with the Langmuir adsorption model (R2 = 0.947) and the maximum adsorption capacity was 50.27 mg/g. The adsorption kinetics was consistent with the pseudo-second-order kinetic model (R2 = 1) and the adsorption rate was mainly controlled by chemisorption. The thermodynamic model confirmed that the adsorption process was a spontaneous heat absorption reaction. The maximum adsorption efficiency was 99.78% under the optimal conditions (40℃, pH 8, reaction time = 90 min, dosing amount = 0.1 mg), and the adsorption efficiency could be improved by increasing the pH and BRB dosing amount. The surface functional groups and crystal structure properties of BRB were the main determinants of adsorption, and it was clarified that physical adsorption, electrostatic attraction and π-π interaction were the main mechanisms for the adsorption of MB by BRB. The main mechanisms were clarified. Therefore, BRB is an economic, efficient and green adsorption material with good potential for the removal of dye pollutants in the aqueous environment.

4.
Opt Lett ; 46(5): 1029-1032, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649649

RESUMEN

We report the bistability of second- and third-harmonic generation in monolayer graphene plasmonics supported by graphene nanoribbon arrays. The nonlinear optical bistability of harmonic generation at the ultra-low threshold intensity ∼100kW/cm2, along with the traditional linear optical bistability of transmittance, is observed due to the different local fundamental fields at the lower and higher state when the Kerr effect of graphene is considered. Importantly, the working fundamental wavelength can be tuned by the Fermi level of graphene and geometrical structure, which leads to the linear and nonlinear optical bistability available in a broadband for potential applications in advanced all-optical devices.

5.
J Invertebr Pathol ; 99(2): 123-8, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18656480

RESUMEN

In this study, interactions between Cry1Ac, a toxic crystal protein produced by Bacillus thuringiensis (Berliner), and Beauveria bassiana on the mortality and survival of Ostrinia furnacalis was evaluated in the laboratory. The results showed that Cry1Ac is toxic to O. furnacalis. Not only were larval growth and development delayed, but pupation, pupal weight and adult emergency also decreased when larvae were fed on artificial diet containing purified Cry1Ac toxin. When third instars O. furnacalis were exposed to combination of B. bassiana (1.8x10(5), 1.8x10(6) or 1.8x10(7) conidia ml(-1)) and Cry1Ac, (0.2 or 0.8 microg g(-1)), the effect on mortality was additive, however, the combinations of sublethal concentrations showed antagonism between Cry1Ac (3.2 or 13 microg g(-1)) and B. bassiana (1.8x10(5) or 1.8x10(6) conidia ml(-1)). When neonates were reared on sublethal concentrations of Cry1AC until the third instar, and survivors exposed B. bassiana conidial suspension, such treatments showed additive effect on mortality of O. furnacalis except for the combination of Cry1Ac (0.2 microg g(-1)) and B. bassiana (1.8x10(6) conidia ml(-1)) that showed antagonism.


Asunto(s)
Proteínas Bacterianas/toxicidad , Beauveria , Endotoxinas/toxicidad , Proteínas Hemolisinas/toxicidad , Lepidópteros/microbiología , Control Biológico de Vectores/métodos , Animales , Toxinas de Bacillus thuringiensis , Larva/crecimiento & desarrollo , Larva/microbiología , Lepidópteros/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...