Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1293883, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455057

RESUMEN

Fibrotic diseases, such as idiopathic pulmonary fibrosis (IPF) and systemic scleroderma (SSc), are commonly associated with high morbidity and mortality, thereby representing a significant unmet medical need. Interleukin 11 (IL11)-mediated cell activation has been identified as a central mechanism for promoting fibrosis downstream of TGFß. IL11 signaling has recently been reported to promote fibroblast-to-myofibroblast transition, thus leading to various pro-fibrotic phenotypic changes. We confirmed increased mRNA expression of IL11 and IL11Rα in fibrotic diseases by OMICs approaches and in situ hybridization. However, the vital role of IL11 as a driver for fibrosis was not recapitulated. While induction of IL11 secretion was observed downstream of TGFß signaling in human lung fibroblasts and epithelial cells, the cellular responses induced by IL11 was quantitatively and qualitatively inferior to that of TGFß at the transcriptional and translational levels. IL11 blocking antibodies inhibited IL11Rα-proximal STAT3 activation but failed to block TGFß-induced profibrotic signals. In summary, our results challenge the concept of IL11 blockade as a strategy for providing transformative treatment for fibrosis.


Asunto(s)
Interleucina-11 , Factor de Crecimiento Transformador beta , Humanos , Factor de Crecimiento Transformador beta/metabolismo , Transducción de Señal , Fibrosis , Miofibroblastos/metabolismo
2.
Elife ; 112022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35175192

RESUMEN

The cytoskeleton network of eukaryotic cells is essential for diverse cellular processes, including vesicle trafficking, cell motility, and immunity, thus is a common target for bacterial virulence factors. A number of effectors from the bacterial pathogen Legionella pneumophila have been shown to modulate the function of host actin cytoskeleton to construct the Legionella-containing vacuole (LCV) permissive for its intracellular replication. In this study, we found that the Dot/Icm effector Lem8 (Lpg1290) is a protease whose activity is catalyzed by a Cys-His-Asp motif known to be associated with diverse biochemical activities. Intriguingly, we found that Lem8 interacts with the host regulatory protein 14-3-3ζ, which activates its protease activity. Furthermore, Lem8 undergoes self-cleavage in a process that requires 14-3-3ζ. We identified the Pleckstrin homology-like domain-containing protein Phldb2 involved in cytoskeleton organization as a target of Lem8 and demonstrated that Lem8 plays a role in the inhibition of host cell migration by attacking Phldb2.


Asunto(s)
Proteínas 14-3-3/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Movimiento Celular , Proteasas de Cisteína/metabolismo , Legionella pneumophila , Animales , Femenino , Células HEK293 , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Enfermedad de los Legionarios/microbiología , Ratones , Transporte de Proteínas , Vacuolas/metabolismo
3.
Cell ; 177(2): 384-398.e11, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30853218

RESUMEN

The signaling organelles of the innate immune system consist of oligomeric protein complexes known as supramolecular organizing centers (SMOCs). Examples of SMOCs include myddosomes and inflammasomes, which respectively induce transcription-dependent and -independent inflammatory responses. The common use of oligomeric structures as signaling platforms suggests multifunctionality, but each SMOC has a singular biochemically defined function. Here, we report that the myddosome is a multifunctional organizing center. In addition to promoting inflammatory transcription factor activation, the myddosome drives the rapid induction of glycolysis. We identify the kinase TBK1 as a myddosome component that promotes glycolysis, but not nuclear factor κB (NF-κB) activation. Synthetic immunology approaches further diversified SMOC activities, as we created interferon- or necroptosis-inducing myddosomes, inflammasomes that induce interferon responses instead of pyroptosis, and a SMOC-like nanomachine that induces interferon expression in response to a chemical ligand. These discoveries demonstrate the flexibility of immune signaling organelles, which permits the design of user-defined innate immune responses.


Asunto(s)
Inmunidad Innata/inmunología , Inmunidad Innata/fisiología , Transducción de Señal/inmunología , Animales , Glucólisis/inmunología , Inflamasomas , Ratones , Ratones Endogámicos C57BL , Enzimas Multifuncionales/inmunología , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Orgánulos/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores Toll-Like
4.
Immunity ; 48(1): 35-44.e6, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29195811

RESUMEN

The interleukin-1 (IL-1) family cytokines are cytosolic proteins that exhibit inflammatory activity upon release into the extracellular space. These factors are released following various cell death processes, with pyroptosis being a common mechanism. Recently, it was recognized that phagocytes can achieve a state of hyperactivation, which is defined by their ability to secrete IL-1 while retaining viability, yet it is unclear how IL-1 can be secreted from living cells. Herein, we report that the pyroptosis regulator gasdermin D (GSDMD) was necessary for IL-1ß secretion from living macrophages that have been exposed to inflammasome activators, such as bacteria and their products or host-derived oxidized lipids. Cell- and liposome-based assays demonstrated that GSDMD pores were required for IL-1ß transport across an intact lipid bilayer. These findings identify a non-pyroptotic function for GSDMD, and raise the possibility that GSDMD pores represent conduits for the secretion of cytosolic cytokines under conditions of cell hyperactivation.


Asunto(s)
Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Proteínas de Neoplasias/metabolismo , Animales , Línea Celular , Membrana Celular/metabolismo , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Humanos , Inflamasomas/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Proteínas de Unión a Fosfato , Transporte de Proteínas/fisiología , Piroptosis/inmunología
5.
Methods Mol Biol ; 1714: 79-95, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29177857

RESUMEN

Ligand-induced macromolecular protein complex formation has emerged as a common means by which the innate immune system activates signal transduction pathways essential for host defense. Despite their structural divergence, key signaling molecules in diverse innate immune pathways mediate signal transduction by assembling higher-order protein complexes at specific subcellular locations in a stimulus-dependent manner. These protein complexes are collectively known as the supramolecular organizing centers (SMOCs), which link active receptors to a variety of downstream cellular responses. In the Toll-like receptor (TLR) pathway, the signaling adaptor MyD88 is the core of a SMOC called the myddosome, which is composed of the sorting adaptor TIRAP and the IRAK family kinases. Depending on the microbial ligands encountered, the myddosome can be assembled at the plasma membrane or endosomes, thereby leading to NF-ĸB and AP-1 activation, and the subsequent expression of pro-inflammatory cytokines. Herein, we provide a detailed protocol for studying myddosome assembly in murine bone marrow-derived macrophages (BMDMs).


Asunto(s)
Inmunoprecipitación/métodos , Macrófagos/metabolismo , Complejos Multiproteicos/aislamiento & purificación , Factor 88 de Diferenciación Mieloide/aislamiento & purificación , Animales , Células Cultivadas , Quinasas Asociadas a Receptores de Interleucina-1/aislamiento & purificación , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Macrófagos/citología , Glicoproteínas de Membrana/aislamiento & purificación , Glicoproteínas de Membrana/metabolismo , Ratones , Complejos Multiproteicos/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Receptores de Interleucina-1/aislamiento & purificación , Receptores de Interleucina-1/metabolismo
6.
Immunity ; 47(4): 697-709.e3, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-29045901

RESUMEN

A heterogeneous mixture of lipids called oxPAPC, derived from dying cells, can hyperactivate dendritic cells (DCs) but not macrophages. Hyperactive DCs are defined by their ability to release interleukin-1 (IL-1) while maintaining cell viability, endowing these cells with potent aptitude to stimulate adaptive immunity. Herein, we found that the bacterial lipopolysaccharide receptor CD14 captured extracellular oxPAPC and delivered these lipids into the cell to promote inflammasome-dependent DC hyperactivation. Notably, we identified two specific components within the oxPAPC mixture that hyperactivated macrophages, allowing these cells to release IL-1 for several days, by a CD14-dependent process. In murine models of sepsis, conditions that promoted cell hyperactivation resulted in inflammation but not lethality. Thus, multiple phagocytes are capable of hyperactivation in response to oxPAPC, with CD14 acting as the earliest regulator in this process, serving to capture and transport these lipids to promote inflammatory cell fate decisions.


Asunto(s)
Células Dendríticas/inmunología , Inflamasomas/inmunología , Receptores de Lipopolisacáridos/inmunología , Fagocitos/inmunología , Fosfatidilcolinas/inmunología , Inmunidad Adaptativa/inmunología , Animales , Western Blotting , Línea Celular , Supervivencia Celular/inmunología , Células Dendríticas/metabolismo , Endocitosis/efectos de los fármacos , Endocitosis/inmunología , Femenino , Citometría de Flujo , Células HEK293 , Humanos , Inflamasomas/metabolismo , Interleucina-1/inmunología , Interleucina-1/metabolismo , Receptores de Lipopolisacáridos/genética , Receptores de Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Fagocitos/metabolismo , Fosfatidilcolinas/metabolismo
7.
Nat Immunol ; 18(10): 1084-1093, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28846084

RESUMEN

Interferon-λ (IFN-λ) is a central regulator of mucosal immunity; however, its signaling specificity relative to that of type I interferons is poorly defined. IFN-λ can induce antiviral interferon-stimulated genes (ISGs) in epithelia, while the effect of IFN-λ in non-epithelial cells remains unclear. Here we report that neutrophils responded to IFN-λ. We found that in addition to inducing ISG transcription, IFN-λ (but not IFN-ß) specifically activated a translation-independent signaling pathway that diminished the production of reactive oxygen species and degranulation in neutrophils. In mice, IFN-λ was elicited by enteric viruses and acted on neutrophils to decrease oxidative stress and intestinal damage. Thus, IFN-λ acted as a unique immunomodulatory agent by modifying transcriptional and non-translational neutrophil responses, which might permit a controlled development of the inflammatory process.


Asunto(s)
Gastroenteritis/etiología , Gastroenteritis/metabolismo , Interferón gamma/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/inmunología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Animales , Análisis por Conglomerados , Modelos Animales de Enfermedad , Gastroenteritis/patología , Expresión Génica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Intestinos/patología , Ratones , Ratones Noqueados , Microbiota , Estrés Oxidativo , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo
8.
PLoS Pathog ; 13(1): e1006186, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28129393

RESUMEN

Legionella pneumophila, the etiological agent of Legionnaires' disease, replicates intracellularly in protozoan and human hosts. Successful colonization and replication of this pathogen in host cells requires the Dot/Icm type IVB secretion system, which translocates approximately 300 effector proteins into the host cell to modulate various cellular processes. In this study, we identified RavK as a Dot/Icm substrate that targets the host cytoskeleton and reduces actin filament abundance in mammalian cells upon ectopic expression. RavK harbors an H95EXXH99 motif associated with diverse metalloproteases, which is essential for the inhibition of yeast growth and for the induction of cell rounding in HEK293T cells. We demonstrate that the actin protein itself is the cellular target of RavK and that this effector cleaves actin at a site between residues Thr351 and Phe352. Importantly, RavK-mediated actin cleavage also occurs during L. pneumophila infection. Cleavage by RavK abolishes the ability of actin to form polymers. Furthermore, an F352A mutation renders actin resistant to RavK-mediated cleavage; expression of the mutant in mammalian cells suppresses the cell rounding phenotype caused by RavK, further establishing that actin is the physiological substrate of RavK. Thus, L. pneumophila exploits components of the host cytoskeleton by multiple effectors with distinct mechanisms, highlighting the importance of modulating cellular processes governed by the actin cytoskeleton in the intracellular life cycle of this pathogen.


Asunto(s)
Citoesqueleto de Actina/patología , Citoesqueleto/patología , Interacciones Huésped-Patógeno/fisiología , Legionella pneumophila/patogenicidad , Enfermedad de los Legionarios/metabolismo , Sistemas de Secreción Tipo IV/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Immunoblotting , Inmunoprecipitación , Enfermedad de los Legionarios/patología , Espectrometría de Masas , Ratones
9.
Traffic ; 18(1): 6-17, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27731905

RESUMEN

The receptors of the mammalian innate immune system are designed for rapid microbial detection, and are located in organelles that are conducive to serve these needs. However, emerging evidence indicates that the sites of microbial detection are not the sites of innate immune signal transduction. Rather, microbial detection triggers the movement of receptors to regions of the cell where factors called sorting adaptors detect active receptors and promote downstream inflammatory responses. These findings highlight the critical role that membrane trafficking pathways play in the initiation of innate immunity to infection. In this review, we describe pathways that promote the microbe-inducible endocytosis of Toll-like receptors (TLRs), and the microbe-inducible movement of TLRs between intracellular compartments. We highlight a new class of proteins called Transporters Associated with the eXecution of Inflammation (TAXI), which have the unique ability to transport TLRs and their microbial ligands to signaling-competent regions of the cell, and we discuss the means by which the subcellular sites of signal transduction are defined.


Asunto(s)
Bacterias/metabolismo , Transporte de Proteínas/fisiología , Transducción de Señal/fisiología , Receptores Toll-Like/metabolismo , Animales , Endocitosis/inmunología , Endocitosis/fisiología , Humanos , Inmunidad Innata , Inflamación/metabolismo , Inflamación/patología , Ligandos , Transporte de Proteínas/inmunología , Transducción de Señal/inmunología
10.
Nature ; 533(7601): 120-4, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27049943

RESUMEN

Signalling by ubiquitination regulates virtually every cellular process in eukaryotes. Covalent attachment of ubiquitin to a substrate is catalysed by the E1, E2 and E3 three-enzyme cascade, which links the carboxy terminus of ubiquitin to the ε-amino group of, in most cases, a lysine of the substrate via an isopeptide bond. Given the essential roles of ubiquitination in the regulation of the immune system, it is not surprising that the ubiquitination network is a common target for diverse infectious agents. For example, many bacterial pathogens exploit ubiquitin signalling using virulence factors that function as E3 ligases, deubiquitinases or as enzymes that directly attack ubiquitin. The bacterial pathogen Legionella pneumophila utilizes approximately 300 effectors that modulate diverse host processes to create a permissive niche for its replication in phagocytes. Here we demonstrate that members of the SidE effector family of L. pneumophila ubiquitinate multiple Rab small GTPases associated with the endoplasmic reticulum. Moreover, we show that these proteins are capable of catalysing ubiquitination without the need for the E1 and E2 enzymes. A putative mono-ADP-ribosyltransferase motif critical for the ubiquitination activity is also essential for the role of the SidE family in intracellular bacterial replication in a protozoan host. The E1/E2-independent ubiquitination catalysed by these enzymes is energized by nicotinamide adenine dinucleotide, which activates ubiquitin by the formation of ADP-ribosylated ubiquitin. These results establish that ubiquitination can be catalysed by a single enzyme, the activity of which does not require ATP.


Asunto(s)
Proteínas Bacterianas/metabolismo , Legionella pneumophila/química , Ubiquitinación , ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/metabolismo , Adenosina Difosfato Ribosa/metabolismo , Adenosina Trifosfato , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Carga Bacteriana , Biocatálisis , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/metabolismo , Legionella pneumophila/citología , Legionella pneumophila/enzimología , Legionella pneumophila/patogenicidad , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , NAD/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Enzimas Activadoras de Ubiquitina , Enzimas Ubiquitina-Conjugadoras , Factores de Virulencia/metabolismo , Proteínas de Unión al GTP rab/química , Proteínas de Unión al GTP rab/metabolismo
11.
Science ; 352(6290): 1232-6, 2016 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-27103670

RESUMEN

Dendritic cells (DCs) use pattern recognition receptors to detect microorganisms and activate protective immunity. These cells and receptors are thought to operate in an all-or-nothing manner, existing in an immunologically active or inactive state. Here, we report that encounters with microbial products and self-encoded oxidized phospholipids (oxPAPC) induce an enhanced DC activation state, which we call "hyperactive." Hyperactive DCs induce potent adaptive immune responses and are elicited by caspase-11, an enzyme that binds oxPAPC and bacterial lipopolysaccharide (LPS). oxPAPC and LPS bind caspase-11 via distinct domains and elicit different inflammasome-dependent activities. Both lipids induce caspase-11-dependent interleukin-1 release, but only LPS induces pyroptosis. The cells and receptors of the innate immune system can therefore achieve different activation states, which may permit context-dependent responses to infection.


Asunto(s)
Inmunidad Adaptativa , Caspasas/inmunología , Células Dendríticas/inmunología , Interleucina-1beta/metabolismo , Lipopolisacáridos/inmunología , Fosfolípidos/metabolismo , Receptores de Reconocimiento de Patrones/inmunología , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Caspasas/genética , Caspasas Iniciadoras , Muerte Celular/inmunología , Células Dendríticas/metabolismo , Inmunidad Innata , Inflamasomas/inmunología , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Receptores de Reconocimiento de Patrones/genética , Receptor Toll-Like 4/agonistas , Receptor Toll-Like 4/metabolismo
12.
Proc Natl Acad Sci U S A ; 112(49): 15090-5, 2015 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-26598703

RESUMEN

Manipulation of the host's ubiquitin network is emerging as an important strategy for counteracting and repurposing the posttranslational modification machineries of the host by pathogens. Ubiquitin E3 ligases encoded by infectious agents are well known, as are a variety of viral deubiquitinases (DUBs). Bacterial DUBs have been discovered, but little is known about the structure and mechanism underlying their ubiquitin recognition. In this report, we found that members of the Legionella pneumophila SidE effector family harbor a DUB module important for ubiquitin dynamics on the bacterial phagosome. Structural analysis of this domain alone and in complex with ubiquitin vinyl methyl ester (Ub-VME) reveals unique molecular contacts used in ubiquitin recognition. Instead of relying on the Ile44 patch of ubiquitin, as commonly used in eukaryotic counterparts, the SdeADub module engages Gln40 of ubiquitin. The architecture of the active-site cleft presents an open arrangement with conformational plasticity, permitting deubiquitination of three of the most abundant polyubiquitin chains, with a distinct preference for Lys63 linkages. We have shown that this preference enables efficient removal of Lys63 linkages from the phagosomal surface. Remarkably, the structure reveals by far the most parsimonious use of molecular contacts to achieve deubiquitination, with less than 1,000 Å(2) of accessible surface area buried upon complex formation with ubiquitin. This type of molecular recognition appears to enable dual specificity toward ubiquitin and the ubiquitin-like modifier NEDD8.


Asunto(s)
Legionella pneumophila/enzimología , Proteínas de la Membrana/metabolismo , Fagosomas/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitinación , Secuencia de Aminoácidos , Proteínas Bacterianas , Células HEK293 , Humanos , Datos de Secuencia Molecular , Ubiquitina/química
13.
Immunity ; 43(5): 909-22, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26546281

RESUMEN

Microbe-induced receptor trafficking has emerged as an essential means to promote innate immune signal transduction. Upon detection of bacterial lipopolysaccharides (LPS), CD14 induces an inflammatory endocytosis pathway that delivers Toll-like receptor 4 (TLR4) to endosomes. Although several regulators of CD14-dependent TLR4 endocytosis have been identified, the cargo-selection mechanism during this process remains unknown. We reveal that, in contrast to classic cytosolic interactions that promoted the endocytosis of transmembrane receptors, TLR4 was selected as cargo for inflammatory endocytosis entirely through extracellular interactions. Mechanistically, the extracellular protein MD-2 bound to and dimerized TLR4 in order to promote this endocytic event. Our analysis of LPS variants from human pathogens and gut commensals revealed a common mechanism by which bacteria prevent inflammatory endocytosis. We suggest that evasion of CD14-dependent endocytosis is an attribute that transcends the concept of pathogenesis and might be a fundamental feature of bacteria that inhabit eukaryotic hosts.


Asunto(s)
Bacterias/inmunología , Endocitosis/inmunología , Evasión Inmune/inmunología , Receptores de Lipopolisacáridos/metabolismo , Receptor Toll-Like 4/metabolismo , Células Cultivadas , Humanos , Inflamación/inmunología , Lipopolisacáridos/inmunología , Antígeno 96 de los Linfocitos/inmunología , Transporte de Proteínas/inmunología , Transducción de Señal/inmunología , Receptor Toll-Like 4/inmunología
14.
Mol Cell ; 54(2): 212-23, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24766885

RESUMEN

The study of innate immunity to bacteria has focused heavily on the mechanisms by which mammalian cells detect lipopolysaccharide (LPS), the conserved surface component of Gram-negative bacteria. While Toll-like receptor 4 (TLR4) is responsible for all the host transcriptional responses to LPS, recent discoveries have revealed the existence of several TLR4-independent responses to LPS. These discoveries not only broaden our view of the means by which mammalian cells interact with bacteria, but they also highlight new selective pressures that may have promoted the evolution of bacterial immune evasion strategies. In this review, we highlight past and recent discoveries on host LPS sensing mechanisms and discuss bacterial countermeasures that promote infection. By looking at both sides of the host-pathogen interaction equation, we hope to provide comprehensive insights into host defense mechanisms and bacterial pathogenesis.


Asunto(s)
Bacterias Gramnegativas/inmunología , Interacciones Huésped-Patógeno , Inmunidad Innata , Lipopolisacáridos/inmunología , Modelos Inmunológicos , Receptor Toll-Like 4/fisiología , Animales , Bacterias Gramnegativas/patogenicidad , Humanos , Evasión Inmune , Lipopolisacáridos/química , Ratones , Transducción de Señal/inmunología , Receptor Toll-Like 4/genética
15.
J Bacteriol ; 195(17): 3914-24, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23813730

RESUMEN

Coxiella burnetii, the etiological agent of acute and chronic Q fever in humans, is a naturally intracellular pathogen that directs the formation of an acidic Coxiella-containing vacuole (CCV) derived from the host lysosomal network. Central to its pathogenesis is a specialized type IVB secretion system (T4SS) that delivers effectors essential for intracellular replication and CCV formation. Using a bioinformatics-guided approach, 234 T4SS candidate substrates were identified. Expression of each candidate as a TEM-1 ß-lactamase fusion protein led to the identification of 53 substrates that were translocated in a Dot/Icm-dependent manner. Ectopic expression in HeLa cells revealed that these substrates trafficked to distinct subcellular sites, including the endoplasmic reticulum, mitochondrion, and nucleus. Expression in Saccharomyces cerevisiae identified several substrates that were capable of interfering with yeast growth, suggesting that these substrates target crucial host processes. To determine if any of these T4SS substrates are necessary for intracellular replication, we isolated 20 clonal T4SS substrate mutants using the Himar1 transposon and transposase. Among these, 10 mutants exhibited defects in intracellular growth and CCV formation in HeLa and J774A.1 cells but displayed normal growth in bacteriological medium. Collectively, these results indicate that C. burnetii encodes a large repertoire of T4SS substrates that play integral roles in host cell subversion and CCV formation and suggest less redundancy in effector function than has been found in the comparative Legionella Dot/Icm model.


Asunto(s)
Proteínas Bacterianas/metabolismo , Coxiella burnetii/crecimiento & desarrollo , Coxiella burnetii/metabolismo , Vacuolas/microbiología , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/genética , Línea Celular , Biología Computacional , Coxiella burnetii/genética , ADN Bacteriano/genética , Células Epiteliales/microbiología , Humanos , Macrófagos/microbiología , Ratones , Mutagénesis Insercional , Transporte de Proteínas , Saccharomyces cerevisiae/crecimiento & desarrollo , Factores de Virulencia/genética
16.
Proc Natl Acad Sci U S A ; 108(52): 21212-7, 2011 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-22158903

RESUMEN

Effectors delivered into host cells by the Legionella pneumophila Dot/Icm type IV transporter are essential for the biogenesis of the specialized vacuole that permits its intracellular growth. The biochemical function of most of these effectors is unknown, making it difficult to assign their roles in the establishment of successful infection. We found that several yeast genes involved in membrane trafficking, including the small GTPase Ypt1, strongly suppress the cytotoxicity of Lpg0695(AnkX), a protein known to interfere severely with host vesicle trafficking when overexpressed. Mass spectrometry analysis of Rab1 purified from a yeast strain inducibly expressing AnkX revealed that this small GTPase is modified posttranslationally at Ser(76) by a phosphorylcholine moiety. Using cytidine diphosphate-choline as the donor for phosphorylcholine, AnkX catalyzes the transfer of phosphorylcholine to Rab1 in a filamentation-induced by cAMP(Fic) domain-dependent manner. Further, we found that the activity of AnkX is regulated by the Dot/Icm substrate Lpg0696(Lem3), which functions as a dephosphorylcholinase to reverse AnkX-mediated modification on Rab1. Phosphorylcholination interfered with Rab1 activity by making it less accessible to the bacterial GTPase activation protein LepB; this interference can be alleviated fully by Lem3. Our results reveal reversible phosphorylcholination as a mechanism for balanced modulation of host cellular processes by a bacterial pathogen.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Legionella pneumophila/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Fosforilcolina/metabolismo , Procesamiento Proteico-Postraduccional/genética , Proteínas de Unión al GTP rab1/metabolismo , Proteínas Bacterianas/metabolismo , Citidina Difosfato Colina , Cartilla de ADN/genética , Perfilación de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/metabolismo , Interacciones Huésped-Patógeno , Immunoblotting , Espectrometría de Masas , Análisis de Secuencia de ADN , Levaduras
17.
Nature ; 475(7357): 506-9, 2011 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-21734656

RESUMEN

Legionella pneumophila actively modulates host vesicle trafficking pathways to facilitate its intracellular replication with effectors translocated by the Dot/Icm type IV secretion system (T4SS). The SidM/DrrA protein functions by locking the small GTPase Rab1 into an active form by its guanine nucleotide exchange factor (GEF) and AMPylation activity. Here we demonstrate that the L. pneumophila protein SidD preferably deAMPylates Rab1. We found that the deAMPylation activity of SidD could suppress the toxicity of SidM to yeast and is required to release Rab1 from bacterial phagosomes efficiently. A molecular mechanism for the temporal control of Rab1 activity in different phases of L. pneumophila infection is thus established. These observations indicate that AMPylation-mediated signal transduction is a reversible process regulated by specific enzymes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Legionella pneumophila/enzimología , Enfermedad de los Legionarios/enzimología , Proteínas de Unión al GTP rab1/metabolismo , Animales , Ácido Aspártico/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/toxicidad , Células Cultivadas , Femenino , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/toxicidad , Enfermedad de los Legionarios/fisiopatología , Macrófagos/enzimología , Macrófagos/patología , Ratones , Fenotipo , Plásmidos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Factores de Tiempo , Transformación Genética
18.
PLoS Pathog ; 7(2): e1001289, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21390206

RESUMEN

The intracellular bacterial pathogen Legionella pneumophila causes an inflammatory pneumonia called Legionnaires' Disease. For virulence, L. pneumophila requires a Dot/Icm type IV secretion system that translocates bacterial effectors to the host cytosol. L. pneumophila lacking the Dot/Icm system is recognized by Toll-like receptors (TLRs), leading to a canonical NF-κB-dependent transcriptional response. In addition, L. pneumophila expressing a functional Dot/Icm system potently induces unique transcriptional targets, including proinflammatory genes such as Il23a and Csf2. Here we demonstrate that this Dot/Icm-dependent response, which we term the effector-triggered response (ETR), requires five translocated bacterial effectors that inhibit host protein synthesis. Upon infection of macrophages with virulent L. pneumophila, these five effectors caused a global decrease in host translation, thereby preventing synthesis of IκB, an inhibitor of the NF-κB transcription factor. Thus, macrophages infected with wildtype L. pneumophila exhibited prolonged activation of NF-κB, which was associated with transcription of ETR target genes such as Il23a and Csf2. L. pneumophila mutants lacking the five effectors still activated TLRs and NF-κB, but because the mutants permitted normal IκB synthesis, NF-κB activation was more transient and was not sufficient to fully induce the ETR. L. pneumophila mutants expressing enzymatically inactive effectors were also unable to fully induce the ETR, whereas multiple compounds or bacterial toxins that inhibit host protein synthesis via distinct mechanisms recapitulated the ETR when administered with TLR ligands. Previous studies have demonstrated that the host response to bacterial infection is induced primarily by specific microbial molecules that activate TLRs or cytosolic pattern recognition receptors. Our results add to this model by providing a striking illustration of how the host immune response to a virulent pathogen can also be shaped by pathogen-encoded activities, such as inhibition of host protein synthesis.


Asunto(s)
Proteínas Bacterianas/inmunología , Legionella pneumophila/inmunología , Legionella pneumophila/patogenicidad , Enfermedad de los Legionarios/inmunología , Biosíntesis de Proteínas/inmunología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Células Cultivadas , Interacciones Huésped-Patógeno/fisiología , Proteínas I-kappa B/genética , Proteínas I-kappa B/inmunología , Proteínas I-kappa B/metabolismo , Inmunidad Innata/fisiología , Legionella pneumophila/genética , Legionella pneumophila/fisiología , Enfermedad de los Legionarios/genética , Enfermedad de los Legionarios/microbiología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Chaperonas Moleculares/metabolismo , Mutación , FN-kappa B/genética , FN-kappa B/inmunología , FN-kappa B/metabolismo , Transporte de Proteínas , Transducción de Señal/inmunología , Receptores Toll-Like/inmunología , Receptores Toll-Like/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/inmunología , Factores de Transcripción/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/inmunología , Factores de Virulencia/metabolismo
19.
PLoS One ; 6(3): e17638, 2011 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-21408005

RESUMEN

A large number of proteins transferred by the Legionella pneumophila Dot/Icm system have been identified by various strategies. With no exceptions, these strategies are based on one or more characteristics associated with the tested proteins. Given the high level of diversity exhibited by the identified proteins, it is possible that some substrates have been missed in these screenings. In this study, we took a systematic method to survey the L. pneumophila genome by testing hypothetical orfs larger than 300 base pairs for Dot/Icm-dependent translocation. 798 of the 832 analyzed orfs were successfully fused to the carboxyl end of ß-lactamase. The transfer of the fusions into mammalian cells was determined using the ß-lactamase reporter substrate CCF4-AM. These efforts led to the identification of 164 proteins positive in translocation. Among these, 70 proteins are novel substrates of the Dot/Icm system. These results brought the total number of experimentally confirmed Dot/Icm substrates to 275. Sequence analysis of the C-termini of these identified proteins revealed that Lpg2844, which contains few features known to be important for Dot/Icm-dependent protein transfer can be translocated at a high efficiency. Thus, our efforts have identified a large number of novel substrates of the Dot/Icm system and have revealed the diverse features recognizable by this protein transporter.


Asunto(s)
Proteínas Bacterianas/metabolismo , Legionella pneumophila/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas de Transporte de Membrana/química , Datos de Secuencia Molecular , Biblioteca de Péptidos , Señales de Clasificación de Proteína , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato , beta-Lactamasas/metabolismo
20.
Cell Logist ; 1(4): 125-127, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22279610

RESUMEN

Successful pathogens are equipped to exploit the signaling pathways of their host cell to establish a niche conducive for their survival and proliferation. One emerging example is the modulation of the small GTPase Rab1 by virulence factors of the intracellular pathogen Legionella pneumophila. Besides proteins that mimic host regulatory factors involved in controlling Rab1 activity, this bacterium temporally locks this small GTPase in its active form by AMPylation. Efficient release of Rab1 from the bacterial phagosome requires deAMPylation prior to being inactivated by the bacterial GAP protein LepB. Whether Rab activity is similarly regulated under native condition is unknown, but it is clear that virulence factors from pathogens can be invaluable tools in dissecting the intricacy of host cellular processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...