Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Breed Sci ; 73(3): 332-342, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37840983

RESUMEN

Many agronomic traits that are important in rice breeding are controlled by multiple genes. The extensive time and effort devoted so far to identifying and selecting such genes are still not enough to target multiple agronomic traits in practical breeding in Japan because of a lack of suitable plant materials in which to efficiently detect and validate beneficial alleles from diverse genetic resources. To facilitate the comprehensive analysis of genetic variation in agronomic traits among Asian cultivated rice, we developed 12 sets of chromosome segment substitution lines (CSSLs) with the japonica background, 11 of them in the same genetic background, using donors representing the genetic diversity of Asian cultivated rice. Using these materials, we overviewed the chromosomal locations of 1079 putative QTLs for seven agronomic traits and their allelic distribution in Asian cultivated rice through multiple linear regression analysis. The CSSLs will allow the effects of putative QTLs in the highly homogeneous japonica background to be validated.

2.
Sensors (Basel) ; 23(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37571608

RESUMEN

Three-dimensional measurement is a high-throughput method that can record a large amount of information. Three-dimensional modelling of plants has the possibility to not only automate dimensional measurement, but to also enable visual assessment to be quantified, eliminating ambiguity in human judgment. In this study, we have developed new methods that could be used for the morphological analysis of plants from the information contained in 3D data. Specifically, we investigated characteristics that can be measured by scale (dimension) and/or visual assessment by humans. The latter is particularly novel in this paper. The characteristics that can be measured on a scale-related dimension were tested based on the bounding box, convex hull, column solid, and voxel. Furthermore, for characteristics that can be evaluated by visual assessment, we propose a new method using normal vectors and local curvature (LC) data. For these examinations, we used our highly accurate all-around 3D plant modelling system. The coefficient of determination between manual measurements and the scale-related methods were all above 0.9. Furthermore, the differences in LC calculated from the normal vector data allowed us to visualise and quantify the concavity and convexity of leaves. This technique revealed that there were differences in the time point at which leaf blistering began to develop among the varieties. The precise 3D model made it possible to perform quantitative measurements of lettuce size and morphological characteristics. In addition, the newly proposed LC-based analysis method made it possible to quantify the characteristics that rely on visual assessment. This research paper was able to demonstrate the following possibilities as outcomes: (1) the automation of conventional manual measurements, and (2) the elimination of variability caused by human subjectivity, thereby rendering evaluations by skilled experts unnecessary.


Asunto(s)
Imagenología Tridimensional , Lactuca , Lactuca/crecimiento & desarrollo , Simulación por Computador
3.
Plant Biotechnol (Tokyo) ; 40(1): 1-8, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38213927

RESUMEN

Nitrogen (N) fertilization is one of the most crucial factors that contribute to increasing food production requiring the generation of rice cultivars with improved N use efficiency (NUE) to maintain yield during low N fertilizer application. To assay NUE extent, we developed a screening system to evaluate shoot growth of each rice cultivar under gradient changes in N concentrations. This system comprises a gradient hydroponic culture and growth visualization systems. The former allows gradient changes in ammonium concentrations, while the latter records the increment in shoot length of individual rice seedlings at given time periods using a fixed-point camera. We chose 69 cultivars including two controls (Oryza sativa L. cv. Nipponbare [WRC01] and Kasalath [WRC02]) from the World Rice Core Collection to investigate shoot growth responses under ammonium-sufficient, ammonium-limited, and low ammonium concentration gradients without transplanting stress. We observed three growth patterns in response to different ammonium concentrations. Subsequently, we selected three representative cultivars (Kasalath, WRC03, and WRC05) for the characteristic responses under the different ammonium environments. Distinct expression patterns of glutamine synthetase 1;2 (OsGS1;2) but OsGS1;1 were observed in response to varying ammonium concentration regimes, indicating that the expression patterns of OsGS1;2 may be a growth marker in terms of shoot growth when transitioning from ammonium-limited to low ammonium concentrations. This system with the level of OsGS1;2 allows us to screen for candidate cultivars that return high NUE in low N environments.

4.
Breed Sci ; 72(1): 75-84, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36045893

RESUMEN

In this study, we developed an all-around 3D plant modeling system that operates using images and is capable of measuring plants non-destructively without any contact. During the fabrication of this device, we selected a method capable of performing 3D model reconstruction from multiple images. We then developed an improved SfM-MVS (Structure from Motion / Multi-View-Stereo) method that enables 3D reconstruction by simply capturing images with a camera. The resulting image-based method offers a high degree of freedom because the hardware and software can comprise commercially available products, and it permits the use of one or more cameras according to the shape and size of the plant. The advantages of the image-based method are that 3D reconstruction can be conducted at any time as long as the images are already taken, and that the desired locations can be observed, measured, and analyzed from 2D images and a 3D point cloud. The device we developed is capable of 3D measurements and modeling of plants from a few millimeters to 2.4 m of height using this method. This article explains this device, the principles of its composition, and the accuracy of the models obtained from it.

5.
Breed Sci ; 72(1): 85-95, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36045895

RESUMEN

Plant phenotyping technology has been actively developed in recent years, but the introduction of these technologies into the field of agronomic research has not progressed as expected, in part due to the need for flexibility and low cost. "DIY" (Do It Yourself) methodologies are an efficient way to overcome such obstacles. Devices with modular functionality are critical to DIY experimentation, allowing researchers flexibility of design. In this study, we developed a plant conveyance system using a commercial AGV (Automated Guided Vehicle) as a case study of DIY plant phenotyping. The convey module consists of two devices, a running device and a plant-handling device. The running device was developed based on a commercial AGV Kit. The plant-handling device, plant stands, and pot attachments were originally designed and fabricated by us and our associates. Software was also developed for connecting the devices and operating the system. The run route was set with magnetic tape, which can be easily changed or rerouted. Our plant delivery system was developed with low cost and having high flexibility, as a unit that can contribute to others' DIY' plant research efforts as well as our own. It is expected that the developed devices will contribute to diverse phenotype observations of plants in the greenhouse as well as to other important functions in plant breeding and agricultural production.

6.
DNA Res ; 29(4)2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35916715

RESUMEN

As soybean cultivars are adapted to a relatively narrow range of latitude, the effects of climate changes are estimated to be severe. To address this issue, it is important to improve our understanding of the effects of climate change by applying the simulation model including both genetic and environmental factors with their interactions (G×E). To achieve this goal, we conducted the field experiments for soybean core collections using multiple sowing times in multi-latitudinal fields. Sowing time shifts altered the flowering time (FT) and growth phenotypes, and resulted in increasing the combinations of genotypes and environments. Genome-wide association studies for the obtained phenotypes revealed the effects of field and sowing time to the significance of detected alleles, indicating the presence of G×E. By using accumulated phenotypic and environmental data in 2018 and 2019, we constructed multiple regression models for FT and growth pattern. Applicability of the constructed models was evaluated by the field experiments in 2020 including a novel field, and high correlation between the predicted and measured values was observed, suggesting the robustness of the models. The models presented here would allow us to predict the phenotype of the core collections in a given environment.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glycine max , Alelos , Genotipo , Fenotipo , Glycine max/genética
7.
PLoS One ; 17(3): e0265994, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35349601

RESUMEN

When used in closed-type plant factories, light-emitting diode (LED) illumination systems have the particular advantages of low heat emission and high luminous efficiency. The effects of illumination quality and intensity on the growth and morphogenesis of many plant species have been examined, but improvements are needed to optimize the illumination systems for better plant products with lower resource investments. In particular, new strategies are needed to reduce the wastage of plant products related to leaf senescence, and to better control the ingredients and appearance of leafy vegetables. Although the quality of light is often altered to change the characteristics of plant products, the transcriptional status underlying the physiological responses of plants to light has not been established. Herein, we performed a comprehensive gene expression analysis using RNA-sequencing to determine how red, blue, and red/blue LEDs and fluorescent light sources affect transcriptome involved in the leaf aging of leaf lettuce. The RNA-sequencing profiling revealed clear differences in the transcriptome between young and old leaves. Red LED light caused large variation between the two age classes, while a pure or mixed blue LED light spectrum induced fewer transcriptome differences between young and old leaves. Collectively, the expression levels of genes that showed homology with those of other model organisms provide a detailed physiological overview, incorporating such characteristics as the senescence, nutrient deficiency, and anthocyanin synthesis of the leaf lettuce plants. Our findings suggest that transcriptome profiles of leaf lettuce grown under different light sources provide helpful information to achieve better growth conditions for marketable and efficient green-vegetable production, with improved wastage control and efficient nutrient inputs.


Asunto(s)
Lactuca , Transcriptoma , Nutrientes , Fotosíntesis , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , ARN/metabolismo
8.
Breed Sci ; 71(2): 167-175, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34377064

RESUMEN

Fruit shape of cultivated strawberry (Fragaria × ananassa Duch.) is an important breeding target. To detect genomic regions associated with this trait, its quantitative evaluation is needed. Previously we created a multi-parent advanced-generation inter-cross (MAGIC) strawberry population derived from six founder parents. In this study, we used this population to quantify fruit shape. Elliptic Fourier descriptors (EFDs) were generated from 2 969 two-dimensional binarized fruit images, and principal component (PC) scores were calculated on the basis of the EFD coefficients. PC1-PC3 explained 96% of variation in shape and thus adequately quantified it. In genome-wide association study, the PC scores were used as phenotypes. Genome wide association study using mixed linear models revealed 2 quantitative trait loci (QTLs) for fruit shape. Our results provide a novel and effective method to analyze strawberry fruit morphology; the detected QTLs and presented method can support marker-assisted selection in practical breeding programs to improve fruit shape.

9.
BMC Plant Biol ; 21(1): 398, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34433428

RESUMEN

BACKGROUND: The root distribution in the soil is one of the elements that comprise the root system architecture (RSA). In monocots, RSA comprises radicle and crown roots, each of which can be basically represented by a single curve with lateral root branches or approximated using a polyline. Moreover, RSA vectorization (polyline conversion) is useful for RSA phenotyping. However, a robust software that can enable RSA vectorization while using noisy three-dimensional (3D) volumes is unavailable. RESULTS: We developed RSAtrace3D, which is a robust 3D RSA vectorization software for monocot RSA phenotyping. It manages the single root (radicle or crown root) as a polyline (a vector), and the set of the polylines represents the entire RSA. RSAtrace3D vectorizes root segments between the two ends of a single root. By utilizing several base points on the root, RSAtrace3D suits noisy images if it is difficult to vectorize it using only two end nodes of the root. Additionally, by employing a simple tracking algorithm that uses the center of gravity (COG) of the root voxels to determine the tracking direction, RSAtrace3D efficiently vectorizes the roots. Thus, RSAtrace3D represents the single root shape more precisely than straight lines or spline curves. As a case study, rice (Oryza sativa) RSA was vectorized from X-ray computed tomography (CT) images, and RSA traits were calculated. In addition, varietal differences in RSA traits were observed. The vector data were 32,000 times more compact than raw X-ray CT images. Therefore, this makes it easier to share data and perform re-analyses. For example, using data from previously conducted studies. For monocot plants, the vectorization and phenotyping algorithm are extendable and suitable for numerous applications. CONCLUSIONS: RSAtrace3D is an RSA vectorization software for 3D RSA phenotyping for monocots. Owing to the high expandability of the RSA vectorization and phenotyping algorithm, RSAtrace3D can be applied not only to rice in X-ray CT images but also to other monocots in various 3D images. Since this software is written in Python language, it can be easily modified and will be extensively applied by researchers in this field.


Asunto(s)
Oryza/anatomía & histología , Oryza/crecimiento & desarrollo , Fenotipo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/crecimiento & desarrollo , Programas Informáticos , Algoritmos , Productos Agrícolas/anatomía & histología , Productos Agrícolas/crecimiento & desarrollo , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos
10.
Plant J ; 107(5): 1569-1580, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34197670

RESUMEN

A cultivation facility that can assist users in controlling the soil water condition is needed for accurately phenotyping plants under drought stress in an artificial environment. Here we report the Internet of Things-based pot system controlling optional treatment of soil water condition (iPOTs), an automatic irrigation system that mimics the drought condition in a growth chamber. The Wi-Fi-enabled iPOTs system allows water supply from the bottom of the pot, based on the soil water level set by the user, and automatically controls the soil water level at a desired depth. The iPOTs also allows users to monitor environmental parameters, such as soil temperature, air temperature, humidity, and light intensity, in each pot. To verify whether the iPOTs mimics the drought condition, we conducted a drought stress test on rice (Oryza sativa L.) varieties and near-isogenic lines, with diverse root system architecture, using the iPOTs system installed in a growth chamber. Similar to the results of a previous drought stress field trial, the growth of shallow-rooted rice accessions was severely affected by drought stress compared with that of deep-rooted accessions. The microclimate data obtained using the iPOTs system increased the accuracy of plant growth evaluation. Transcriptome analysis revealed that pot positions in the growth chamber had little impact on plant growth. Together, these results suggest that the iPOTs system is a reliable platform for phenotyping plants under drought stress.


Asunto(s)
Internet de las Cosas , Oryza/genética , Suelo/química , Estrés Fisiológico , Agua/fisiología , Sequías , Perfilación de la Expresión Génica , Genotipo , Oryza/fisiología , Fenotipo , Mapas de Interacción de Proteínas
11.
Plant Methods ; 16: 66, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32426023

RESUMEN

BACKGROUND: X-ray computed tomography (CT) allows us to visualize root system architecture (RSA) beneath the soil, non-destructively and in a three-dimensional (3-D) form. However, CT scanning, reconstruction processes, and root isolation from X-ray CT volumes, take considerable time. For genetic analyses, such as quantitative trait locus mapping, which require a large population size, a high-throughput RSA visualization method is required. RESULTS: We have developed a high-throughput process flow for the 3-D visualization of rice (Oryza sativa) RSA (consisting of radicle and crown roots), using X-ray CT. The process flow includes use of a uniform particle size, calcined clay to reduce the possibility of visualizing non-root segments, use of a higher tube voltage and current in the X-ray CT scanning to increase root-to-soil contrast, and use of a 3-D median filter and edge detection algorithm to isolate root segments. Using high-performance computing technology, this analysis flow requires only 10 min (33 s, if a rough image is acceptable) for CT scanning and reconstruction, and 2 min for image processing, to visualize rice RSA. This reduced time allowed us to conduct the genetic analysis associated with 3-D RSA phenotyping. In 2-week-old seedlings, 85% and 100% of radicle and crown roots were detected, when 16 cm and 20 cm diameter pots were used, respectively. The X-ray dose per scan was estimated at < 0.09 Gy, which did not impede rice growth. Using the developed process flow, we were able to follow daily RSA development, i.e., 4-D RSA development, of an upland rice variety, over 3 weeks. CONCLUSIONS: We developed a high-throughput process flow for 3-D rice RSA visualization by X-ray CT. The X-ray dose assay on plant growth has shown that this methodology could be applicable for 4-D RSA phenotyping. We named the RSA visualization method 'RSAvis3D' and are confident that it represents a potentially efficient application for 3-D RSA phenotyping of various plant species.

12.
Nat Commun ; 10(1): 1216, 2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30872580

RESUMEN

Efficient crop improvement depends on the application of accurate genetic information contained in diverse germplasm resources. Here we report a reference-grade genome of wild soybean accession W05, with a final assembled genome size of 1013.2 Mb and a contig N50 of 3.3 Mb. The analytical power of the W05 genome is demonstrated by several examples. First, we identify an inversion at the locus determining seed coat color during domestication. Second, a translocation event between chromosomes 11 and 13 of some genotypes is shown to interfere with the assignment of QTLs. Third, we find a region containing copy number variations of the Kunitz trypsin inhibitor (KTI) genes. Such findings illustrate the power of this assembly in the analysis of large structural variations in soybean germplasm collections. The wild soybean genome assembly has wide applications in comparative genomic and evolutionary studies, as well as in crop breeding and improvement programs.


Asunto(s)
Genoma de Planta/genética , Glycine max/genética , Fitomejoramiento/métodos , Sitios de Carácter Cuantitativo/genética , Evolución Biológica , Variaciones en el Número de Copia de ADN , Domesticación , Genómica/métodos , Genotipo , Anotación de Secuencia Molecular , Péptidos/genética , Proteínas de Plantas/genética , Translocación Genética/genética
13.
Breed Sci ; 68(3): 305-315, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30100797

RESUMEN

Canopy temperature can be a good indicator of stomatal conductance. To understand the genetic basis of phenotypic differences in stomatal conductance between average and high-yielding rice (Oryza sativa L.) cultivars, we conducted a quantitative trait locus (QTL) analysis of canopy temperature. We developed reciprocal series of backcross inbred lines (BC1F6) derived from a cross between the average-yielding japonica cultivar 'Koshihikari' and the high-yielding indica cultivar 'Takanari'. A stable QTL, qCTd11 (QTL for canopy temperature difference on chromosome 11) on the short arm of chromosome 11, accounted for 10.4 and 19.8% of the total phenotypic variance in the two lines; the 'Takanari' allele decreased the canopy temperature difference value. A chromosome segment substitution line carrying the Takanari qCTd11 showed a greater reduction in canopy temperature than 'Koshihikari', and had higher stomatal conductance and photosynthetic rate. These results suggest that qCTd11 is not only involved in canopy temperature, but is also involved in both stomatal conductance and photosynthetic rate.

14.
Plant Cell Physiol ; 59(10): 2030-2038, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30010970

RESUMEN

High-throughput and accurate measurements of plant traits facilitate identification of gene function. Along with recent advances in quantitative genomics, there is a growing need for precise quantification of multiple traits in plants. However, it is difficult continuously to quantify plant adaptive responses to environmental stress responses such as drought because multiple environmental factors are intricately involved in the phenotype. To solve this problem, we developed an automatic phenotyping system for evaluating the growth responses of individual Arabidopsis plants to a wide range of environmental conditions. The RIKEN Integrated Plant Phenotyping System (RIPPS) controls soil moisture for single plants by automatically weighing and watering 120 continuously rotating pots under controlled light, humidity and temperature growth conditions. RIPPS also records individual rosette size and expansion rate by photographing plants every 2 h. We used RIPPS to establish phenotype evaluation methods for Arabidopsis growth response and water use efficiency under various water conditions, and analyzed the involvement of ABA metabolism in determining water use efficiency. We also used RIPPS to analyze salinity tolerance in Arabidopsis plants.


Asunto(s)
Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Fenotipo , Proteínas de Plantas/genética
15.
Breed Sci ; 67(4): 363-369, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29085246

RESUMEN

Most soybean cultivars possess broad leaflets; however, a recessive allele on the Ln locus is known to cause the alteration of broad to narrow leaflets. The recessive allele ln has also been considered to increase the number of seeds per pod (NSP) and has the potential to improve yield. Recently, Gm-JAG1 (Glyma20g25000), a gene controlling Ln, has been shown to complement leaf shape and silique length in Arabidopsis mutants. However, whether Gm-JAG1 is responsible for those traits in soybean is not yet known. In this study, we investigated the pleiotropic effect of soybean Ln gene on leaflet shape and NSP by using two independent soybean Gm-jag1 mutants and four ln near isogenic lines (NILs). The leaflet shape was evaluated using a leaf image analysis software, SmartLeaf, which was customized from SmartGrain. The leaflets of both the Gm-jag1 mutants were longer and narrower than those of the wild-type plants. Interestingly, the image analysis results clarified that the perimeter of the mutant leaflets did not change, although their leaflet area decreased. Furthermore, one mutant line with narrow leaflets showed significantly higher NSP than that in the wild (or Ln) genotype, indicating that soybean Ln gene pleiotropically controls leaflet shape and NSP.

16.
Front Plant Sci ; 8: 60, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28197156

RESUMEN

Increasing the rate of leaf photosynthesis is one important approach for increasing grain yield in rice (Oryza sativa). Exploiting the natural variation in CO2 assimilation rate (A) between rice cultivars using quantitative genetics is one promising means to identify genes contributing to higher photosynthesis. In this study, we determined precise location of Carbon Assimilation Rate 8 (CAR8) by crossing a high-yielding indica cultivar with a Japanese commercial cultivar. Fine mapping suggested that CAR8 encodes a putative Heme Activator Protein 3 (OsHAP3) subunit of a CCAAT-box-binding transcription factor called OsHAP3H. Sequencing analysis revealed that the indica allele of CAR8 has a 1-bp deletion at 322 bp from the start codon, resulting in a truncated protein of 125 amino acids. In addition, CAR8 is identical to DTH8/Ghd8/LHD1, which was reported to control rice flowering date. The increase of A is largely due to an increase of RuBP regeneration rate via increased leaf nitrogen content, and partially explained by reduced stomatal limitation via increased stomatal conductance relative to A. This allele also increases hydraulic conductivity, which would promote higher stomatal conductance. This indicates that CAR8 affects multiple physiological aspects relating to photosynthesis. The detailed analysis of molecular functions of CAR8 would help to understand the association between photosynthesis and flowering and demonstrate specific genetic mechanisms that can be exploited to improve photosynthesis in rice and potentially other crops.

17.
Plant Sci ; 251: 75-81, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27593465

RESUMEN

In addition to improving drought tolerance, improvement of water use efficiency is a major challenge in plant physiology. Due to their trade-off relationships, it is generally considered that achieving stress tolerance is incompatible with maintaining stable growth. Abscisic acid (ABA) is a key phytohormone that regulates the balance between intrinsic growth and environmental responses. Previously, we identified AtABCG25 as a cell-membrane ABA transporter that export ABA from the inside to the outside of cells. AtABCG25-overexpressing plants showed a lower transpiration phenotype without any growth retardation. Here, we dissected this useful trait using precise phenotyping approaches. AtABCG25 overexpression stimulated a local ABA response in guard cells. Furthermore, AtABCG25 overexpression enhanced drought tolerance, probably resulting from maintenance of water contents over the common threshold for survival after drought stress treatment. Finally, we observed enhanced water use efficiency by overexpression of AtABCG25, in addition to drought tolerance. These results were consistent with the function of AtABCG25 as an ABA efflux transporter. This unique trait may be generally useful for improving the water use efficiency and drought tolerance of plants.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/fisiología , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Agua/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Conservación de los Recursos Naturales , Regulación de la Expresión Génica de las Plantas , Estomas de Plantas/fisiología , Transducción de Señal
18.
Genetics ; 201(2): 795-808, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26275424

RESUMEN

We investigated the natural variations in the flag leaf morphology of rice. We conducted a principal component analysis based on nine flag leaf morphology traits using 103 accessions from the National Institute of Agrobiological Sciences Core Collection. The first component explained 39% of total variance, and the variable with highest loading was the width of the flag leaf (WFL). A genome-wide association analysis of 102 diverse Japanese accessions revealed that marker RM6992 on chromosome 4 was highly associated with WFL. In analyses of progenies derived from a cross between Takanari and Akenohoshi, the most significant quantitative trait locus (QTL) for WFL was in a 10.3-kb region containing the NARROW LEAF 1 (NAL1) gene, located 0.4 Mb downstream of RM6992. Analyses of chromosomal segment substitution lines indicated that a mutation (G1509A single-nucleotide mutation, causing an R233H amino acid substitution in NAL1) was present at the QTL. This explained 13 and 20% of total variability in WFL and the distance between small vascular bundles, respectively. The mutation apparently occurred during rice domestication and spread into japonica, tropical japonica, and indica subgroups. Notably, one accession, Phulba, had a NAL1 allele encoding only the N-terminal, or one-fourth, of the wild-type peptide. Given that the Phulba allele and the histidine-type allele showed essentially the same phenotype, the histidine-type allele was regarded as malfunctional. The phenotypes of transgenic plants varied depending on the ratio of histidine-type alleles to arginine-type alleles, raising the possibility that H(233)-type products function differently from and compete with R(233)-type products.


Asunto(s)
Oryza/genética , Hojas de la Planta/genética , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo/genética , Alelos , Mapeo Cromosómico , Estudio de Asociación del Genoma Completo , Genotipo , Mutación , Fenotipo , Plantas Modificadas Genéticamente/genética
19.
BMC Plant Biol ; 15: 115, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-25953146

RESUMEN

BACKGROUND: Heading date, a crucial factor determining regional and seasonal adaptation in rice (Oryza sativa L.), has been a major selection target in breeding programs. Although considerable progress has been made in our understanding of the molecular regulation of heading date in rice during last two decades, the previously isolated genes and identified quantitative trait loci (QTLs) cannot fully explain the natural variation for heading date in diverse rice accessions. RESULTS: To genetically dissect naturally occurring variation in rice heading date, we collected QTLs in advanced-backcross populations derived from multiple crosses of the japonica rice accession Koshihikari (as a common parental line) with 11 diverse rice accessions (5 indica, 3 aus, and 3 japonica) that originate from various regions of Asia. QTL analyses of over 14,000 backcrossed individuals revealed 255 QTLs distributed widely across the rice genome. Among the detected QTLs, 128 QTLs corresponded to genomic positions of heading date genes identified by previous studies, such as Hd1, Hd6, Hd3a, Ghd7, DTH8, and RFT1. The other 127 QTLs were detected in different chromosomal regions than heading date genes. CONCLUSIONS: Our results indicate that advanced-backcross progeny allowed us to detect and confirm QTLs with relatively small additive effects, and the natural variation in rice heading date could result from combinations of large- and small-effect QTLs. We also found differences in the genetic architecture of heading date (flowering time) among maize, Arabidopsis, and rice.


Asunto(s)
Ecotipo , Flores/genética , Flores/fisiología , Oryza/genética , Oryza/fisiología , Alelos , Cromosomas de las Plantas/genética , Cruzamientos Genéticos , Modelos Genéticos , Fotoperiodo , Mapeo Físico de Cromosoma , Sitios de Carácter Cuantitativo/genética , Reproducibilidad de los Resultados
20.
Plant Biotechnol J ; 13(6): 753-65, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25487714

RESUMEN

The rice transcription factor WRKY45 plays a central role in the salicylic acid signalling pathway and mediates chemical-induced resistance to multiple pathogens, including Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae. Previously, we reported that rice transformants overexpressing WRKY45 driven by the maize ubiquitin promoter were strongly resistant to both pathogens; however, their growth and yield were negatively affected because of the trade-off between the two conflicting traits. Also, some unknown environmental factor(s) exacerbated this problem. Here, we report the development of transgenic rice lines resistant to both pathogens and with agronomic traits almost comparable to those of wild-type rice. This was achieved by optimizing the promoter driving WRKY45 expression. We isolated 16 constitutive promoters from rice genomic DNA and tested their ability to drive WRKY45 expression. Comparisons among different transformant lines showed that, overall, the strength of WRKY45 expression was positively correlated with disease resistance and negatively correlated with agronomic traits. We conducted field trials to evaluate the growth of transgenic and control lines. The agronomic traits of two lines expressing WRKY45 driven by the OsUbi7 promoter (PO sUbi7 lines) were nearly comparable to those of untransformed rice, and both lines were pathogen resistant. Interestingly, excessive WRKY45 expression rendered rice plants sensitive to low temperature and salinity, and stress sensitivity was correlated with the induction of defence genes by these stresses. These negative effects were barely observed in the PO sUbi7 lines. Moreover, their patterns of defence gene expression were similar to those in plants primed by chemical defence inducers.


Asunto(s)
Genes de Plantas , Magnaporthe/patogenicidad , Oryza/microbiología , Factores de Transcripción/genética , Xanthomonas/patogenicidad , Oryza/genética , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...