Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 53(45): 12055-8, 2014 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-25219329

RESUMEN

Five different first-row transition metal precursors (V(III), Cr(III), Mn(II), Co(II), Ni(II)) were successfully incorporated into a catechol porous organic polymer (POP) and characterized using ATR-IR and XAS analysis. The resulting metallated POPs were then evaluated for catalytic alkyne hydrogenation using high-throughput screening techniques. All POPs were unexpectedly found to be active and selective catalysts for alkyne semihydrogenation. Three of the metallated POPs (V, Cr, Mn) are the first of their kind to be active single-site hydrogenation catalysts. These results highlight the advantages of using a POP platform to develop new catalysts which are otherwise difficult to achieve through traditional heterogeneous and homogeneous routes.

2.
Chemistry ; 19(41): 13646-51, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-24092536

RESUMEN

Very POP right now! DFT computational analysis on the structural, energetic, and IR spectroscopic characteristics of a porous organic polymer support, [Ta(NMe2 )5 ] as a molecular precursor, and the catalytic material synthesized from these two components are presented and analyzed against recorded IR spectra of these systems. The analysis leads to unambiguous identification of the atomic structure of the POP-supported Ta-amide reaction center synthesized in the experiment.

3.
Chem Commun (Camb) ; 48(75): 9370-2, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-22895350

RESUMEN

Functionalization of the ligand 1,3,5-tris(4-carboxyphenyl)benzene (H(3)BTB) has been realized with methoxy (H(3)BTB-[OMe](3)) and hydroxy (H(3)BTB-[OH](3)) groups. Combining H(3)BTB-[OMe](3) and Zn(II) results in the formation of the first isostructural, functionalized analogue of MOF-177 (MOF-177-OMe), while the combination of H(3)BTB-[OH](3) and Zn(II) generates a rare, interpenetrated pcu-e framework.

4.
Chem Soc Rev ; 40(2): 498-519, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21103601

RESUMEN

Metal-organic frameworks (MOFs) are an important class of hybrid inorganic-organic materials. In this tutorial review, a progress report on the postsynthetic modification (PSM) of MOFs is provided. PSM refers to the chemical modification of the MOF lattice in a heterogeneous fashion. This powerful synthetic approach has grown in popularity and resulted in a number of advances in the functionalization and application of MOFs. The use of PSM to develop MOFs with improved gas sorption, catalytic activity, bioactivity, and more robust physical properties is discussed. The results reported to date clearly show that PSM is an important approach for the development and advancement of these hybrid solids.


Asunto(s)
Compuestos Organometálicos/química , Catálisis , Metales/química , Compuestos Orgánicos/química , Oxidación-Reducción
6.
Inorg Chem ; 49(14): 6766-74, 2010 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-20565054

RESUMEN

Metal-organic frameworks (MOFs) have shown promise as heterogeneous catalysts because of their high crystallinity, uniform pores, and ability to be chemically and physically tuned for specific chemical transformations. One of the challenges with MOF-based catalysis is few systems achieve all of the desired features for a heterogeneous catalyst, including high activity, robustness (recyclability), and excellent selectivity. Herein, postsynthetic modification (PSM) of a MOF is used to synthesize a series of MOF catalysts that are highly robust and active for epoxide ring-opening reactions. In the following study, four metalated MOFs (UMCM-1-AMInpz, UMCM-1-AMInsal, UMCM-1-AMFesal, and UMCM-1-AMCupz) are examined as catalysts for beta-azido and beta-amino alcohol synthesis with epoxides of varying sizes and shapes using two different nucleophiles (TMSN(3) and aniline). The four MOFs are isostructural, exhibit good thermal and structural stability, and display different catalytic activities based on the combination of metal ion and chelating ligand immobilized within the framework. In particular, UMCM-1-AMInpz and UMCM-1-AMInsal act as robust, single-site catalysts with distinct selectivity for ring-opening reactions with specific nucleophiles. More importantly, one of these catalysts, UMCM-1-AMInpz, selectively promotes the ring-opening of cis-stilbene oxide in the presence of trans-stilbene oxide, which cannot be achieved with a comparable molecular Lewis acid catalyst. The results show that PSM is a promising, modular, and highly tunable approach for the discovery of robust, active, and selective MOF catalysts that combine the best aspects of homogeneous and heterogeneous systems.

7.
Chemistry ; 16(1): 212-7, 2010 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-19918824

RESUMEN

Postsynthetic modification is presented as a means to tune the hydrogen adsorption properties of a series of metal-organic frameworks (MOFs). IRMOF-3 (isoreticular metal-organic framework), UMCM-1-NH(2) (University of Michigan crystalline material), and DMOF-1-NH(2) (DABCO metal-organic framework) have been covalently modified with a series of anhydrides or isocyanates and the hydrogen sorption properties have been studied. Both the storage capacities and isosteric heats of adsorption clearly show that covalent postsynthetic modification can significantly enhance the sorption affinity of MOFs with hydrogen and in some cases increase both gravimetric and volumetric uptake of the gas as much as 40 %. The significance of the present study is illustrated by: 1) the nature of the substituents introduced by postsynthetic modification result in different effects on the binding of hydrogen; 2) the covalent postsynthetic modification approach allows for systematic modulation of hydrogen sorption properties; and 3) the ease of postsynthetic modification of MOFs allows a direct evaluation of the interplay between MOF structure, hydrogen uptake, and heat of adsorption. The findings presented herein show that postsynthetic modification is a powerful method to manipulate and better understand the gas sorption properties of MOFs.

9.
Inorg Chem ; 48(15): 7341-9, 2009 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-19580256

RESUMEN

An isoreticular metal-organic framework (IRMOF-3) containing 2-amino-1,4-benzenedicarboxylic acid (NH(2)-BDC) as a building block is shown to undergo chemical modification with a diverse series of anhydrides and isocyanates. The modification of IRMOF-3 by these reagents has been evidenced by using a variety of methods, including NMR and electrospray ionization mass spectrometry, and the structural integrity of the modified MOFs has been confirmed by thermogravimetric analysis, powder X-ray diffraction, and gas sorption analysis. The results show that a variety of functional groups can be introduced onto the MOF including amines, carboxylic acids, and chiral groups. Furthermore, it is shown that tert-butyl-based asymmetric anhydrides can be used to selectively deliver chemical payloads to the IRMOF. Finally, the results demonstrate that at least four different chemical modifications can be performed on IRMOF-3 and that the reaction conditions can be modulated to control the relative abundance of each group. The findings presented here demonstrate several important features of postsynthetic modification on IRMOF-3, including (1) facile introduction of a wide range of functional groups using simple reagents (e.g., anhydrides and isocyanates), (2) the introduction of multiple (as many as four different) substituents into the MOF lattice, and (3) control over reaction conditions to preserve the crystallinity and microporosity of the resultant MOFs. The findings clearly illustrate that postsynthetic modification represents a powerful means to access new MOF compounds with unprecedented chemical complexity, which may serve as the basis of multifunctional materials.


Asunto(s)
Compuestos Organometálicos/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Molecular , Difracción de Rayos X
10.
Inorg Chem ; 48(1): 296-306, 2009 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-19053339

RESUMEN

2-Amino-1,4-benzenedicarboxylic acid (NH(2)-BDC) has been found to be a compatible building block for the construction of two new metal-organic frameworks (MOFs) that have structures isoreticular to reported MOFs that use 1,4-benzenedicarboxylic acid (BDC) as a building block. DMOF-1-NH(2) (DABCO MOF-1-NH(2)) is a derivative of a previously studied MOF that contains two-dimensional square grids based on NH(2)-BDC and zinc(II) paddle-wheel units; the grid layers are connected by DABCO (1,4-diazabicyclo[2.2.2]octane) molecules that coordinate in the axial positions of the paddlewheel secondary-building units (SBUs). UMCM-1-NH(2) is an NH(2)-BDC derivative of UMCM-1 (University of Michigan Crystalline Material-1), a highly porous MOF reported by Matzger et al., and consists of both NH(2)-BDC and BTB (BTB = 4,4',4''-benzene-1,3,5-triyl-tribenzoate) linkers with Zn(4)O SBUs. The structure of UMCM-1-NH(2) was confirmed by single-crystal X-ray diffraction. By using NH(2)-BDC to generate these MOFs, the pendant amino groups can serve as a chemical handle that can be manipulated via postsynthetic modification with alkyl anhydrides. Reactions of each MOF and different anhydrides have been performed to compare the extent of conversion, thermal and structural stability, and Brunauer-Emmett-Teller surface areas afforded by the resulting materials. Under comparable reaction conditions, (1)H NMR of digested samples show that UMCM-1-NH(2) has conversions comparable to that of IRMOF-3, while DMOF-1-NH(2) only shows high conversions with smaller anhydrides. Under specific reaction conditions, higher conversions were obtained with complete retention of crystallinity, as verified by single-crystal X-ray diffraction experiments. The results presented here demonstrate three important findings: (a) NH(2)-BDC can be used as a surrogate for BDC in a number of MOFs thereby providing a handle for postsynthetic modification, (b) postsynthetic modification is a general strategy to functionalizing MOFs that can be applied to a variety of MOF structures, and (c) the topology and chemical/thermal stability of a MOF can influence the type of chemical reactions and reagents that can be used for postsynthetic modification.

11.
J Am Chem Soc ; 130(26): 8508-17, 2008 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-18540671

RESUMEN

The pendant amino groups in isoreticular metal-organic framework-3 (IRMOF-3) were subjected to postsynthetic modification with 10 linear alkyl anhydrides (O(CO(CH2)nCH3)2 (where n = 1 to 18) and the extent of conversion, thermal and structural stability, and Brunauer-Emmett-Teller (BET) surface areas of the resulting materials were probed. (1)H NMR of digested samples showed that longer alkyl chain anhydrides resulted in lower conversions of IRMOF-3 to the corresponding amide framework (designated as IRMOF-3-AM2 to IRMOF-3-AM19). Percent conversions ranged from essentially quantitative (approximately 99%, -AM2) to approximately 7% (-AM19) with IRMOF-3 samples. Modified samples were thermally stable up to approximately 430 degrees C and remained crystalline based on powder X-ray diffraction (PXRD) measurements. Under specific reaction conditions, significant conversions were obtained with complete retention of crystallinity, as verified by single-crystal X-ray diffraction experiments. Single crystals of modified IRMOF-3 samples all showed that the F-centered cubic framework was preserved. All single crystals used for X-ray diffraction were analyzed by electrospray ionization mass spectrometry (ESI-MS) to confirm that these frameworks contained the modified 1,4-benzenedicarboxylate ligand. Single crystals of each modified IRMOF-3 were further characterized by measuring the dinitrogen gas sorption of each framework to determine the effects of modification on the porosity of the MOF. BET surface areas (m(2)/g) confirmed that all modified IRMOF-3 samples maintained microporosity regardless of the extent of modification. The surface area of modified MOFs was found to correlate to the size and number of substituents added to the framework.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA