Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FASEB J ; 37(11): e23252, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37850918

RESUMEN

Hippocampal hyperexcitability is a promising therapeutic target to prevent Aß deposition in AD since enhanced neuronal activity promotes presynaptic Aß production and release. This article highlights the potential application of perampanel (PER), an AMPA receptor (AMPAR) antagonist approved for partial seizures, as a therapeutic agent for AD. Using transgenic AD mice combined with in vivo brain microdialysis and primary neurons under oligomeric Aß-evoked neuronal hyperexcitability, the acute effects of PER on Aß metabolism were investigated. A single oral administration of PER rapidly decreased ISF Aß40 and Aß42 levels in the hippocampus of J20, APP transgenic mice, without affecting the Aß40 /Aß42 ratio; 5 mg/kg PER resulted in declines of 20% and 31%, respectively. Moreover, PER-treated J20 manifested a marked decrease in hippocampal APP ßCTF levels with increased FL-APP levels. Consistently, acute treatment of PER reduced sAPPß levels, a direct byproduct of ß-cleavage of APP, released to the medium in primary neuronal cultures under oligomeric Aß-induced neuronal hyperexcitability. To further evaluate the effect of PER on ISF Aß clearance, a γ-secretase inhibitor was administered to J20 1 h after PER treatment. PER did not influence the elimination of ISF Aß, indicating that the acute effect of PER is predominantly on Aß production. In conclusion, acute treatment of PER reduces Aß production by suppressing ß-cleavage of amyloid-ß precursor protein effectively, indicating a potential effect of PER against Aß pathology in AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Ratones , Animales , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Receptores AMPA , Piridonas/farmacología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Ratones Transgénicos , Secretasas de la Proteína Precursora del Amiloide/metabolismo
2.
Rinsho Shinkeigaku ; 59(3): 144-148, 2019 Mar 28.
Artículo en Japonés | MEDLINE | ID: mdl-30814447

RESUMEN

A 21-year-old woman presented with a chief complaint of generalized tonic-clonic seizures occurring once a month at night since the age of 14. The patient was treated with clonazepam plus levetiracetam, but seizure frequency was not reduced. After the detailed re-examination of her history of illness, it was revealed that she has been suffering from transient and recurrent choreoathetoid attacks triggered by sudden voluntary movements since she was a junior high school student, and it recently increased in frequency. Neither she nor her family recognize that it was significant to describe to the doctors. She was diagnosed as a complex of paroxysmal kinesigenic choreoathetosis (PKC) and its related conditions. Direct sequencing of proline-rich transmembrane protein 2 (PRRT2) revealed the most frequently described gene mutation, (NM_145239.2:c.649dupC), among PRRT2-related paroxysmal disorders. PKC and seizures were readily controlled with small dose of carbamazepine. Given the broad spectrum of PRRT2-related paroxysmal disorders, assessment of potential clinical complication of paroxysmal disorders including PKC might therefore be critical.


Asunto(s)
Distonía/genética , Proteínas de la Membrana/genética , Mutación , Proteínas del Tejido Nervioso/genética , Convulsiones/genética , Carbamazepina/administración & dosificación , Distonía/diagnóstico , Distonía/tratamiento farmacológico , Distonía/etiología , Electroencefalografía , Femenino , Humanos , Convulsiones/tratamiento farmacológico , Privación de Sueño/complicaciones , Resultado del Tratamiento , Adulto Joven
3.
J Comp Neurol ; 525(4): 794-817, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-27532901

RESUMEN

The striatum, the largest nucleus of the basal ganglia controlling motor and cognitive functions, can be characterized by a labyrinthine mosaic organization of striosome/matrix compartments. It is unclear how striosome/matrix mosaic formation is spatially and temporally controlled at the cellular level during striatal development. Here, by combining in vivo electroporation and brain slice cultures, we set up a prospective experimental system in which we differentially labeled striosome and matrix cells from the time of birth and followed their distributions and migratory behaviors. Our results showed that, at an initial stage of striosome/matrix mosaic formation, striosome cells were mostly stationary, whereas matrix cells actively migrated in multiple directions regardless of the presence of striosome cells. The mostly stationary striosome cells were still able to associate to form patchy clusters via attractive interactions. Our results suggest that the restricted migratory capability of striosome cells may allow them to cluster together only when they happen to be located in close proximity to each other and are not separated by actively migrating matrix cells. The way in which the mutidirectionally migrating matrix cells intermingle with the mostly stationary striosome cells may therefore determine the topographic features of striosomes. At later stages, the actively migrating matrix cells began to repulse the patchy clusters of striosomes, presumably enhancing the striosome cluster formation and the segregation and eventual formation of dichotomous homogeneous striosome/matrix compartments. Overall, our study reveals temporally distinct migratory behaviors of striosome/matrix cells, which may underlie the sequential steps of mosaic formation in the developing striatum. J. Comp. Neurol. 525:794-817, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Cuerpo Estriado/citología , Cuerpo Estriado/embriología , Neurogénesis/fisiología , Neuronas/citología , Animales , Movimiento Celular/fisiología , Inmunohistoquímica , Ratones , Ratones Endogámicos ICR , Imagen de Lapso de Tiempo
4.
PLoS One ; 7(11): e48730, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23144948

RESUMEN

The domestic chicken is an attractive model system to explore the development and function of brain circuits. Electroporation-mediated and retrovirus (including lentivirus) vector-mediated gene transfer techniques have been widely used to introduce genetic material into chicken cells. However, it is still challenging to efficiently transduce chicken postmitotic neurons without harming the cells. To overcome this problem, we searched for a virus vector suitable for gene transfer into chicken neurons, and report here a novel recombinant virus vector derived from avian adeno-associated virus (A3V). A3V vector efficiently transduces neuronal cells, but not non-neuronal cells in the brain. A single A3V injection into a postembryonic chick brain allows gene expression selectively in neuronal cells within 24 hrs. Such rapid and neuron-specific gene transduction raises the possibility that A3V vector can be utilized for studies of memory formation in filial imprinting, which occurs during the early postnatal days. A3V injection into the neural tube near the ear vesicle at early embryonic stage resulted in persistent and robust gene expression until E20.5 in the auditory brainstem. We further devised an A3V-mediated tetracycline (Tet) dependent gene expression system as a tool for studying the auditory circuit, consisting of the nucleus magnocellularis (NM) and nucleus laminaris (NL), that primarily computes interaural time differences (ITDs). Using this Tet system, we can transduce NM neurons without affecting NL neurons. Thus, the A3V technology complements current gene transfer techniques in chicken studies and will contribute to better understanding of the functional organization of neural circuits.


Asunto(s)
Encéfalo/metabolismo , Pollos/genética , Dependovirus/genética , Neuronas/metabolismo , Transducción Genética/métodos , Animales , Encéfalo/embriología , Embrión de Pollo , Perfilación de la Expresión Génica , Vectores Genéticos/genética
5.
Dev Neurobiol ; 72(8): 1099-113, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21190179

RESUMEN

The generation of distinct neural subtypes depends on the activities of cell-extrinsic and -intrinsic factors during the development of the vertebrate CNS. Previous studies have provided a molecular basis for how neural progenitors are patterned and generate distinct descendants that are spatially and temporally regulated by inductive signals secreted by polarized sources. However, it still remains unknown how the generation of neural descendants by progenitors located at polarized sources of inductive signals is controlled. Sonic hedgehog (Shh), which is expressed at the ventral midline in the forebrain, has been shown to play a critical role for the patterning and specification of distinct neural subtypes in the forebrain. Here, we analyzed the identities and distributions of Shh-descendants generated at discrete time points in the forebrain by using a ShhcreER(T2) mouse driver line in which a tamoxifen-inducible Cre cassette was inserted into the Shh locus together with a Z/EG mouse reporter line. Our results showed that Shh-expressing neural progenitors generated neuronal and glial descendants distributed throughout the telencephalon and diencephalon in a temporally distinct manner. Furthermore, our results showed that Shh-progenitors are located at two spatially distinct sub-domains that can be characterized by their temporally distinct patterns of Shh expression. These results suggest that temporally- and spatially controlled mechanisms that specify neural subtypes operate in the Shh-expressing progenitor domain, and raise the possibility that the distinct temporal gradient of Shh activity might be responsible for the generation of distinct neural subtypes in the telencephalon.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/biosíntesis , Neuronas/citología , Prosencéfalo/citología , Prosencéfalo/embriología , Células Madre/fisiología , Animales , Polaridad Celular/fisiología , Femenino , Proteínas Hedgehog/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Transgénicos , Neuronas/clasificación , Neuronas/metabolismo , Embarazo , Prosencéfalo/fisiología , Estructura Terciaria de Proteína/fisiología , Células Madre/metabolismo , Factores de Tiempo
6.
Neural Dev ; 3: 29, 2008 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-18986510

RESUMEN

BACKGROUND: Robo1, Robo2 and Rig-1 (Robo3), members of the Robo protein family, are candidate receptors for the chemorepellents Slit and are known to play a crucial role in commissural axon guidance in the spinal cord. However, their roles at other axial levels remain unknown. Here we examine expression of Robo proteins by cerebellofugal (CF) commissural axons in the rostral hindbrain and investigate their roles in CF axon pathfinding by analysing Robo knockout mice. RESULTS: We analysed the expression of Robo proteins by CF axons originating from deep cerebellar neurons in rodent embryos, focusing on developmental stages of their midline crossing and post-crossing navigation. At the stage of CF axon midline crossing, mRNAs of Robo1 and Robo2 are expressed in the nuclear transitory zone of the cerebellum, where the primordium of the deep cerebellar nuclei are located, supporting the notion that CF axons express Robo1 and Robo2. Indeed, immunohistochemical analysis of CF axons labelled by electroporation to deep cerebellar nuclei neurons indicates that Robo1 protein, and possibly also Robo2 protein, is expressed by CF axons crossing the midline. However, weak or no expression of these proteins is found on the longitudinal portion of CF axons. In Robo1/2 double knockout mice, many CF axons reach the midline but fail to exit it. We find that CF axons express Rig-1 (Robo3) before they reach the midline but not after the longitudinal turn. Consistent with this in vivo observation, axons elicited from a cerebellar explant in co-culture with a floor plate explant express Rig-1. In Rig-1 deficient mouse embryos, CF axons appear to project ipsilaterally without reaching the midline. CONCLUSION: These results indicate that Robo1, Robo2 or both are required for midline exit of CF axons. In contrast, Rig-1 is required for their approach to the midline. However, post-crossing up-regulation of these proteins, which plays an important role in spinal commissural axon guidance, does not appear to be required for the longitudinal navigation of CF axons after midline crossing. Our results illustrate that although common mechanisms operate for midline crossing at different axial levels, significant variation exists in post-crossing navigation.


Asunto(s)
Axones/fisiología , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Receptores Inmunológicos/fisiología , Animales , Axones/metabolismo , Western Blotting , Cerebelo/embriología , Cerebelo/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Vectores Genéticos/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Hibridación in Situ , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Fluorescente , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Receptores de Superficie Celular , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Rombencéfalo/embriología , Rombencéfalo/metabolismo , Técnicas de Cultivo de Tejidos , Transfección , Proteínas Roundabout
7.
J Neurosci ; 24(40): 8711-9, 2004 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-15470137

RESUMEN

Laminar organization, a fundamental neural architecture in the CNS, is a prominent feature of the neocortex, where the cortical neurons in spatially distinct layers are generated from the common progenitors in a temporally distinct manner during development. Despite many advances in the characterization of the molecular mechanisms of the radial migration of cortical neurons, the way in which the early-late temporal sequence of cortical neuron generation is linked with the deep-superficial spatial sequence of cell body positioning remains obscure. Using in vivo electroporation-mediated gene transfer, we show here that the activities mediated by fibroblast growth factor receptors (FGFRs) in cortical progenitors are critical for conferring proper migratory properties on nascent neuronal progeny. Furthermore, we provide supportive evidence that Pea3 subfamily members of Ets (Pea3-Ets) transcription factors mediate the activities of FGFR at the mid to late phase of neocortical development. In addition, using FGF18 knock-out mice, we demonstrate that FGF18 expressed by early-generated cortical neurons in the cortical plate is critical for the expression of Pea3-Ets transcription factors and that FGF18 is sufficient to induce their expressions. Our results thus imply that a feedback mechanism mediated by FGF signaling is involved in setting up the proper laminar positioning of cortical neurons; FGF18 derived from early-generated cortical neurons acts on the cortical progenitors expressing FGFRs and induces the expression of Pea3-Ets transcription factors that, in turn, confer proper migratory behaviors on nascent cortical progeny during the mid to late stages of neocortical development.


Asunto(s)
Factores de Crecimiento de Fibroblastos/fisiología , Neocórtex/embriología , Neuronas/fisiología , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Animales , Tipificación del Cuerpo , Movimiento Celular , Factores de Crecimiento de Fibroblastos/genética , Cinética , Ratones , Ratones Endogámicos ICR , Ratones Noqueados , Mutación , Neocórtex/citología , Neocórtex/metabolismo , Neuronas/citología , Proteínas Tirosina Quinasas/metabolismo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos , Células Madre/fisiología , Factores de Transcripción/genética
8.
J Neurosci ; 24(37): 8124-34, 2004 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-15371513

RESUMEN

Tlx belongs to a class of orphan nuclear receptors that underlies many aspects of neural development in the CNS. However, the fundamental roles played by Tlx in the control of eye developmental programs remain elusive. By using Tlx knock-out (KO) mice, we show here that Tlx is expressed by retinal progenitor cells in the neuroblastic layer during the period of retinal layer formation, and it is critical for controlling the generation of appropriate numbers of retinal progenies through the activities of cell cycle-related molecules, cyclin D1 and p27Kip1. Tlx expression is restricted to Müller cells in the mature retina and appears to control their proper development. Furthermore, we show that Tlx is expressed by immature astrocytes that migrate from the optic nerve onto the inner surface of the retina and is required for their generation and maturation, as assessed by honeycomb network formation and expression of R-cadherin, a critical component for vasculogenesis. The impaired astrocyte network formation on the inner retinal surface is accompanied by the loss of vasculogenesis in Tlx KO retinas. Our studies thus indicate that Tlx underlies a fundamental developmental program of retinal organization and controls the generation of the proper numbers of retinal progenies and development of glial cells during the protracted period of retinogenesis.


Asunto(s)
Astrocitos/citología , Proteínas del Ojo/fisiología , Neuroglía/citología , Receptores Citoplasmáticos y Nucleares/fisiología , Retina/citología , Animales , Apoptosis , Astrocitos/metabolismo , Cadherinas/biosíntesis , Cadherinas/genética , Recuento de Células , Ciclo Celular , Proteínas de Ciclo Celular/fisiología , Diferenciación Celular , Movimiento Celular , Ciclina D1/fisiología , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Anomalías del Ojo/genética , Proteínas del Ojo/biosíntesis , Proteínas del Ojo/genética , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Noqueados , Neovascularización Fisiológica/genética , Neuroglía/metabolismo , Receptores Citoplasmáticos y Nucleares/biosíntesis , Receptores Citoplasmáticos y Nucleares/deficiencia , Receptores Citoplasmáticos y Nucleares/genética , Retina/embriología , Retina/crecimiento & desarrollo , Vasos Retinianos/embriología , Vasos Retinianos/crecimiento & desarrollo , Proteínas Supresoras de Tumor/fisiología
9.
Proc Natl Acad Sci U S A ; 101(40): 14509-14, 2004 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-15452350

RESUMEN

Cajal-Retzius (CR) cells are early-generated transient neurons and are important in the regulation of cortical neuronal migration and cortical laminar formation. Molecular entities characterizing the CR cell identity, however, remain largely elusive. We purified mouse cortical CR cells expressing GFP to homogeneity by fluorescence-activated cell sorting and examined a genome-wide expression profile of cortical CR cells at embryonic and postnatal periods. We identified 49 genes that exceeded hybridization signals by >10-fold in CR cells compared with non-CR cells at embryonic day 13.5, postnatal day 2, or both. Among these CR cell-specific genes, 25 genes, including the CR cell marker genes such as the reelin and calretinin genes, are selectively and highly expressed in both embryonic and postnatal CR cells. These genes, which encode generic properties of CR cell specificity, are eminently characterized as modulatory composites of voltage-dependent calcium channels and sets of functionally related cellular components involved in cell migration, adhesion, and neurite extension. Five genes are highly expressed in CR cells at the early embryonic period and are rapidly down-regulated thereafter. Furthermore, some of these genes have been shown to mark two distinctly different focal regions corresponding to the CR cell origins. At the late prenatal and postnatal periods, 19 genes are selectively up-regulated in CR cells. These genes include functional molecules implicated in synaptic transmission and modulation. CR cells thus strikingly change their cellular phenotypes during cortical development and play a pivotal role in both corticogenesis and cortical circuit maturation.


Asunto(s)
Neocórtex/citología , Neocórtex/metabolismo , Neuronas/metabolismo , Animales , Señalización del Calcio , Adhesión Celular , Movimiento Celular , Separación Celular , Citometría de Flujo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/genética , Ratones , Ratones Transgénicos , Neocórtex/embriología , Neocórtex/crecimiento & desarrollo , Neuritas/ultraestructura , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Recombinantes/genética , Proteína Reelina
10.
J Neurosci ; 24(9): 2286-95, 2004 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-14999079

RESUMEN

An early and fundamental step of the laminar organization of developing neocortex is controlled by the developmental programs that critically depend on the activities of reelin-positive cells in the marginal zone. However, the ontogeny of reelin-positive cells remained elusive. To gain insights into the spatial and temporal regulation of reelin-positive marginal zone cell development, we used a transgenic mouse line in which we defined the green fluorescent protein (GFP) transgene as a novel reliable molecular marker of reelin-positive marginal zone cells from the early stages of their development. We further used exo utero electroporation-mediated gene transfer that allows us to mark progenitor cells and monitor the descendants in the telencephalon in vivo. We show here the generation of reelin-positive marginal zone cells from the caudomedial wall of telencephalic vesicles, including the cortical hem, where the prominent expression of GFP is initially detected. These neurons tangentially migrate at the cortical marginal zone and are distributed throughout the entire neocortex in a caudomedial-high to rostrolateral-low gradient during the dynamic developmental period of corticogenesis. Therefore, our findings on reelin-positive marginal zone cells, in addition to the cortical interneurons, add to the emerging view that the neocortex consists of neuronal subtypes that originate from a focal source extrinsic to the neocortex, migrate tangentially into the neocortex, and thereby underlie neural organization of the neocortex.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/biosíntesis , Movimiento Celular/fisiología , Proteínas de la Matriz Extracelular/biosíntesis , Neuronas/metabolismo , Telencéfalo/metabolismo , Animales , Antígenos de Diferenciación/biosíntesis , Células Cultivadas , Proteínas de Unión al ADN/biosíntesis , Electroporación , Genes Reporteros , Genes Supresores de Tumor , Edad Gestacional , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/biosíntesis , Proteínas Luminiscentes/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Transgénicos , Neocórtex/citología , Neocórtex/embriología , Neocórtex/metabolismo , Proteínas del Tejido Nervioso , Neuronas/citología , Proteínas Nucleares/biosíntesis , Proteína Reelina , Serina Endopeptidasas , Telencéfalo/citología , Telencéfalo/embriología , Proteína Tumoral p73 , Proteínas Supresoras de Tumor
11.
Development ; 130(8): 1523-36, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12620979

RESUMEN

In the developing spinal cord, motor neurons acquire columnar subtype identities that can be recognized by distinct profiles of homeodomain transcription factor expression. The mechanisms that direct the differentiation of motor neuron columnar subtype from an apparently uniform group of motor neuron progenitors remain poorly defined. In the chick embryo, the Mnx class homeodomain protein MNR2 is expressed selectively by motor neuron progenitors, and has been implicated in the specification of motor neuron fate. We show here that MNR2 expression persists in postmitotic motor neurons that populate the median motor column (MMC), whereas its expression is rapidly extinguished from lateral motor column (LMC) neurons and from preganglionic autonomic neurons of the Column of Terni (CT). The extinction of expression of MNR2, and the related Mnx protein HB9, from postmitotic motor neurons appears to be required for the generation of CT neurons but not for LMC generation. In addition, MNR2 and HB9 are likely to mediate the suppression of CT neuron generation that is induced by the LIM HD protein Lim3. Finally, MNR2 appears to regulate motor neuron identity by acting as a transcriptional repressor, providing further evidence for the key role of transcriptional repression in motor neuron specification.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas de Homeodominio/metabolismo , Neuronas Motoras/fisiología , Proteínas Represoras/metabolismo , Médula Espinal/citología , Secuencia de Aminoácidos , Animales , Biomarcadores , Proteína Morfogenética Ósea 5 , Proteínas Morfogenéticas Óseas/metabolismo , Embrión de Pollo , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Inmunohistoquímica , Mitosis , Modelos Anatómicos , Datos de Secuencia Molecular , Neuronas Motoras/clasificación , Neuronas Motoras/citología , Proteínas del Tejido Nervioso/metabolismo , Proteínas Represoras/genética , Médula Espinal/crecimiento & desarrollo , Médula Espinal/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA