Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 63(42): 9323-32, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26447559

RESUMEN

The ω5-gliadins are the major sensitizing allergens in wheat-dependent exercise-induced anaphylaxis (WDEIA). In this study, two-dimensional immunoblot analysis was used to assess the allergenic potential of two transgenic wheat lines in which ω5-gliadin genes were silenced by RNA interference. Sera from 7 of 11 WDEIA patients showed greatly reduced levels of immunoglobulin E (IgE) reactivity to ω5-gliadins in both transgenic lines. However, these sera also showed low levels of reactivity to other gluten proteins. Sera from three patients showed the greatest reactivity to proteins other than ω5-gliadins, either high-molecular-weight glutenin subunits (HMW-GSs), α-gliadins, or non-gluten proteins. The complexity of immunological responses among these patients suggests that flour from the transgenic lines would not be suitable for individuals already diagnosed with WDEIA. However, the introduction of wheat lacking ω5-gliadins could reduce the number of people sensitized to these proteins and thereby decrease the overall incidence of this serious food allergy.


Asunto(s)
Anafilaxia/inmunología , Antígenos de Plantas/inmunología , Gliadina/inmunología , Plantas Modificadas Genéticamente/inmunología , Triticum/inmunología , Hipersensibilidad al Trigo/inmunología , Adulto , Anafilaxia/sangre , Antígenos de Plantas/análisis , Antígenos de Plantas/genética , Ejercicio Físico , Femenino , Harina/análisis , Alimentos Modificados Genéticamente , Gliadina/análisis , Gliadina/genética , Glútenes/inmunología , Humanos , Inmunoglobulina E/sangre , Masculino , Plantas Modificadas Genéticamente/química , Plantas Modificadas Genéticamente/genética , Triticum/química , Triticum/genética , Hipersensibilidad al Trigo/sangre
2.
J Proteome Res ; 14(1): 503-11, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25329597

RESUMEN

While the antigenic specificity and pathogenic relevance of immunologic reactivity to gluten in celiac disease have been extensively researched, the immune response to nongluten proteins of wheat has not been characterized. We aimed to investigate the level and molecular specificity of antibody response to wheat nongluten proteins in celiac disease. Serum samples from patients and controls were screened for IgG and IgA antibody reactivity to a nongluten protein extract from the wheat cultivar Triticum aestivum Butte 86. Antibodies were further analyzed for reactivity to specific nongluten proteins by two-dimensional gel electrophoresis and immunoblotting. Immunoreactive molecules were identified by tandem mass spectrometry. Compared with healthy controls, patients exhibited significantly higher levels of antibody reactivity to nongluten proteins. The main immunoreactive nongluten antibody target proteins were identified as serpins, purinins, α-amylase/protease inhibitors, globulins, and farinins. Assessment of reactivity toward purified recombinant proteins further confirmed the presence of antibody response to specific antigens. The results demonstrate that, in addition to the well-recognized immune reaction to gluten, celiac disease is associated with a robust humoral response directed at a specific subset of the nongluten proteins of wheat.


Asunto(s)
Antígenos/inmunología , Enfermedad Celíaca/inmunología , Inmunidad Humoral/inmunología , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Electroforesis en Gel Bidimensional , Epítopos , Humanos , Immunoblotting , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Espectrometría de Masas en Tándem
3.
BMC Plant Biol ; 14: 393, 2014 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-25539796

RESUMEN

BACKGROUND: The end-use quality of wheat flour varies as a result of the growth conditions of the plant. Among the wheat gluten proteins, the omega-5 gliadins have been identified as a major source of environmental variability, increasing in proportion in grain from plants that receive fertilizer or are subjected to high temperatures during grain development. The omega-5 gliadins also have been associated with the food allergy wheat-dependent exercise-induced anaphylaxis (WDEIA). Recently, transgenic lines with reduced levels of omega-5 gliadins were developed using RNA interference (RNAi). These lines make it possible to determine whether changes in the levels of omega-5 gliadins in response to environmental conditions and agronomic inputs may be responsible for changes in flour end-use quality. RESULTS: Two transgenic wheat lines and a non-transgenic control were grown under a controlled temperature regimen with or without post-anthesis fertilizer and the protein composition of the resulting flour was analyzed by quantitative two-dimensional gel electrophoresis (2-DE). In one transgenic line, all 2-DE spots identified as omega-5 gliadins were substantially reduced without effects on other proteins. In the other transgenic line, the omega-5 gliadins were absent and there was a partial reduction in the levels of the omega-1,2 gliadins and the omega-1,2 chain-terminating gliadins as well as small changes in several other proteins. With the exception of the omega gliadins, the non-transgenic control and the transgenic plants showed similar responses to the fertilizer treatment. Protein contents of flour were determined by the fertilizer regimen and were similar in control and transgenic samples produced under each regimen while both mixing time and mixing tolerance were improved in flour from transgenic lines when plants received post-anthesis fertilizer. CONCLUSIONS: The data indicate that omega-5 gliadins have a negative effect on flour quality and suggest that changes in quality with the growth environment may be due in part to alterations in the levels of the omega gliadins. Because a known food allergen and one of the major sources of environmentally-induced variation in wheat flour protein composition has been eliminated, the transgenic lines may yield flour with both improved end-use quality and more consistent functionality when grown in different locations.


Asunto(s)
Antígenos de Plantas/metabolismo , Gliadina/metabolismo , Triticum/metabolismo , Culinaria , Electroforesis en Gel Bidimensional , Fertilizantes , Plantas Modificadas Genéticamente , Triticum/genética
4.
Proteome Sci ; 12(1): 8, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-24517725

RESUMEN

BACKGROUND: Certain wheat gluten proteins form large protein polymers that are extractable in 0.5% SDS only after sonication. Although there is a strong relationship between the amounts of these polymers in the flour and bread-making quality, the protein components of these polymers have not been thoroughly investigated. RESULTS: Flour proteins from the US bread wheat Butte 86 were extracted in 0.5% SDS using a two-step procedure with and without sonication. Proteins were further separated by size exclusion chromatography (SEC) into monomeric and polymeric fractions and analyzed by quantitative two-dimensional gel electrophoresis (2-DE). When proteins in select 2-DE spots were identified by tandem mass spectrometry (MS/MS), overlapping spots from the different protein fractions often yielded different identifications. Most high-molecular-weight glutenin subunits (HMW-GS) and low-molecular-weight glutenin subunits (LMW-GS) partitioned into the polymer fractions, while most gliadins were found in the monomer fractions. The exceptions were alpha, gamma and omega gliadins containing odd numbers of cysteine residues. These proteins were detected in all fractions, but comprised the largest proportion of the SDS-extractable polymer fraction. Several types of non-gluten proteins also were found in the polymer fractions, including serpins, triticins and globulins. All three types were found in the largest proportions in the SDS-extractable polymer fraction. CONCLUSIONS: This is the first study to report the accumulation of gliadins containing odd numbers of cysteine residues in the SDS-extractable glutenin polymer fraction, supporting the hypothesis that these gliadins serve as chain terminators of the polymer chains. These data make it possible to formulate hypotheses about how protein composition influences polymer size and structure and provide a foundation for future experiments aimed at determining how environment affects glutenin polymer distribution. In addition, the analysis revealed additional layers of complexity to the wheat flour proteome that should be considered when evaluating quantitative 2-DE data.

5.
Proteome Sci ; 11(1): 8, 2013 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-23432757

RESUMEN

BACKGROUND: Flour quality is largely determined by the gluten proteins, a complex mixture of proteins consisting of high molecular weight-glutenin subunits (HMW-GS), low molecular weight-glutenin subunits (LMW-GS), and α-, γ-, and ω-gliadins. Detailed proteomic analyses of the effects of fertilizer and high temperature on individual gliadin and glutenin protein levels are needed to determine how these environmental factors influence flour quality. RESULTS: Wheat plants (Triticum aestivum L. cv. Butte 86) were grown in greenhouses under moderate and high temperature regimens with and without post-anthesis fertilizer. Quantitative two-dimensional gel electrophoresis was used to construct accumulation profiles in developing endosperm for the entire complement of gluten proteins identified previously by tandem mass spectrometry. Amounts of individual gliadins and glutenins were also determined in flour produced under each of the regimens. Under all environmental regimens, most HMW-GS, LMW-GS, γ- and ω-gliadins accumulated rapidly during early stages of grain development and leveled off during middle stages of development. A subset of LMW-GS showed a second distinct profile, accumulating throughout development, while α-gliadins showed a variety of accumulation profiles. In flour, fourteen distinct gluten proteins responded similarly to fertilizer, high temperature, and high temperature plus fertilizer. The majority of HMW-GS and ω-gliadins and some α-gliadins increased while two LMW-GS and a minor γ-gliadin decreased. Fertilizer did not influence gluten protein accumulation under high temperature conditions. Additionally, the effects of fertilizer and high temperature were not additive; very few changes were observed when plants that received fertilizer were subjected to high temperature. CONCLUSIONS: Although post-anthesis temperature and fertilizer have very different effects on grain development and yield, the two treatments elicit surprisingly similar effects on the accumulation of gluten proteins. The similarity of the responses to the different treatments is likely due to source-sink activities of nitrogen reserves in the wheat plant. Because each protein that showed a response in this study is linked to a gene sequence, the work sets the stage for transgenic studies that will better elucidate the roles of specific proteins in flour quality and in the response to the environment.

6.
Proteome Sci ; 9: 46, 2011 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-21816081

RESUMEN

BACKGROUND: Mineral nutrition during wheat grain development has large effects on wheat flour protein content and composition, which in turn affect flour quality and immunogenic potential for a commodity of great economic value. However, it has been difficult to define the precise effects of mineral nutrition on protein composition because of the complexity of the wheat flour proteome. Recent improvements in the identification of flour proteins by tandem mass spectrometry (MS/MS) and the availability of a comprehensive proteome map of flour from the US wheat Butte 86 now make it possible to document changes in the proportions of individual flour proteins that result from the application of mineral nutrition. RESULTS: Plants of Triticum aestivum 'Butte 86' were grown with or without post-anthesis fertilization (PAF) and quantitative 2-dimensional gel electrophoresis (2-DE) was used to analyze protein composition of the resulting flour. Significant changes in the proportions of 54 unique proteins were observed as a result of the treatment. Most omega-gliadins, high molecular weight glutenin subunits (HMW-GS) and serpins as well as some alpha-gliadins increased in proportion with PAF. In contrast, alpha-amylase/protease inhibitors, farinins, purinins and puroindolines decreased in proportion. Decreases were also observed in several low molecular weight glutenin subunits (LMW-GS), globulins, defense proteins and enzymes. The ratio of HMW-GS to LMW-GS in the flour increased from 0.61 to 0.95 and the ratio of gliadins to glutenins increased from 1.02 to 1.30 with PAF. Because flour protein content doubled with PAF from 7 to 14%, most protein types actually increased in absolute amount (µg/mg flour protein). Data further suggest that flour proteins change with PAF according to their content of sulfur-containing amino acids Cys + Met. CONCLUSIONS: A 2-DE approach revealed changes in the wheat flour proteome due to PAF that are important for flour quality and immunogenic potential. The work forms a baseline for further studies of the effects of environmental variables on flour protein composition and provides clues about the regulation of specific flour protein genes. The study also is important for identifying targets for breeding programs and biotechnology efforts aimed at improving flour quality.

7.
Proteome Sci ; 9: 10, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21314956

RESUMEN

BACKGROUND: Wheat flour is one of the world's major food ingredients, in part because of the unique end-use qualities conferred by the abundant glutamine- and proline-rich gluten proteins. Many wheat flour proteins also present dietary problems for consumers with celiac disease or wheat allergies. Despite the importance of these proteins it has been particularly challenging to use MS/MS to distinguish the many proteins in a flour sample and relate them to gene sequences. RESULTS: Grain from the extensively characterized spring wheat cultivar Triticum aestivum 'Butte 86' was milled to white flour from which proteins were extracted, then separated and quantified by 2-DE. Protein spots were identified by separate digestions with three proteases, followed by tandem mass spectrometry analysis of the peptides. The spectra were used to interrogate an improved protein sequence database and results were integrated using the Scaffold program. Inclusion of cultivar specific sequences in the database greatly improved the results, and 233 spots were identified, accounting for 93.1% of normalized spot volume. Identified proteins were assigned to 157 wheat sequences, many for proteins unique to wheat and nearly 40% from Butte 86. Alpha-gliadins accounted for 20.4% of flour protein, low molecular weight glutenin subunits 18.0%, high molecular weight glutenin subunits 17.1%, gamma-gliadins 12.2%, omega-gliadins 10.5%, amylase/protease inhibitors 4.1%, triticins 1.6%, serpins 1.6%, purinins 0.9%, farinins 0.8%, beta-amylase 0.5%, globulins 0.4%, other enzymes and factors 1.9%, and all other 3%. CONCLUSIONS: This is the first successful effort to identify the majority of abundant flour proteins for a single wheat cultivar, relate them to individual gene sequences and estimate their relative levels. Many genes for wheat flour proteins are not expressed, so this study represents further progress in describing the expressed wheat genome. Use of cultivar-specific contigs helped to overcome the difficulties of matching peptides to gene sequences for members of highly similar, rapidly evolving storage protein families. Prospects for simplifying this process for routine analyses are discussed. The ability to measure expression levels for individual flour protein genes complements information gained from efforts to sequence the wheat genome and is essential for studies of effects of environment on gene expression.

8.
J Agric Food Chem ; 58(7): 4169-79, 2010 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-20225876

RESUMEN

Verification of the biocontent in biobased or "green" products identifies genuine products, exposes counterfeit copies, supports or refutes content claims, and ensures consumer confidence. When the biocontent includes protein, elemental nitrogen analysis is insufficient for verification since non-protein, but nitrogen-rich, content also may be present. However, the proteins can be extracted, separated by electrophoretic methods, and detected by UV absorption, protein stain, or immunoblotting. We utilized capillary zone electrophoresis (CZE) to separate proteins in a gliadin fraction that had been dissolved in aqueous ethanol (70%) and polyacrylamide gel electrophoresis (PAGE) to separate proteins in a gliadin-plus-glutenin fraction that had been dissolved in water containing both sodium dodecyl sulfate (SDS) and a reducing agent, dithiothreitol (DTT). We sought to verify the presence of these wheat grain proteins in wheat bread, a wheat flake cereal, wheat beer, and an enclosure for an antique automobile ignition coil reputed to contain wheat gluten. Proteins extracted from commercial wheat, corn, and soy flours served as standards, and proteins from heat-altered wheat served as process condition references. This approach successfully identified wheat proteins in these products especially if the process temperature did not exceed 120 degrees C. Above this temperature attenuation was nearly complete for proteins analyzed by CZE, but wheat-like patterns could still be recognized by one- and two-dimensional PAGE. Immunoblots reacted with grain-specific antibodies confirmed the identities of the cereal component especially when the protein pattern was greatly altered by thermal modification, specific protein adsorption, or protein digestion. In addition to verifying that wheat proteins are present, the complementary use of these methods can reveal whether whole wheat gluten or merely an alcohol-soluble fraction had been used in the specific product and indicate the level of thermal damage.


Asunto(s)
Electroforesis Capilar/métodos , Electroforesis en Gel de Poliacrilamida/métodos , Manipulación de Alimentos , Gliadina/análisis , Triticum/química , Proteínas de Plantas/análisis
9.
J Agric Food Chem ; 56(21): 10292-302, 2008 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-18837505

RESUMEN

Wheat starch is used to make baked products for celiac patients in several European countries but is avoided in the United States because of uncertainty about the amounts of associated grain storage (gluten) proteins. People with celiac disease (CD) must avoid wheat, rye, and barley proteins and products that contain them. These proteins are capable of initiating damage to the absorptive lining of the small intestine in CD patients, apparently as a consequence of undesirable interactions with the innate and adaptive immune systems. In this study, starch surface-associated proteins were extracted from four commercial wheat starches, fractionated by high-performance liquid chromatography and gel electrophoresis, and identified by tandem mass spectrometry analysis. More than 150 proteins were identified, many of which (for example, histones, purothionins, and glutenins) had not been recognized previously as starch-associated. The commercial starches were analyzed by the R-5 enzyme-linked immunosorbent assay method to estimate the amount of harmful gluten protein present. One of these starches had a low gluten content of 7 ppm and actually fell within the range proposed as a new Codex Alimentarius Standard for naturally gluten-free foods (maximum 20 ppm). This low level of gluten indicates that the starch should be especially suitable for use by celiac patients, although wheat starches with levels up to 100 ppm are deemed safe in the proposed Codex standards.


Asunto(s)
Enfermedad Celíaca/dietoterapia , Glútenes/análisis , Almidón/análisis , Triticum/química , Dieta con Restricción de Proteínas , Glútenes/ultraestructura , Humanos , Datos de Secuencia Molecular , Extractos Vegetales/análisis , Almidón/ultraestructura , Triticum/ultraestructura , Estados Unidos
10.
Plant Physiol ; 144(3): 1559-79, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17513483

RESUMEN

Germination of cereals is accompanied by extensive change in the redox state of seed proteins. Proteins present in oxidized form in dry seeds are converted to the reduced state following imbibition. Thioredoxin (Trx) appears to play a role in this transition in cereals. It is not known, however, whether Trx-linked redox changes are restricted to cereals or whether they take place more broadly in germinating seeds. To gain information on this point, we have investigated a model legume, Medicago truncatula. Two complementary gel-based proteomic approaches were followed to identify Trx targets in seeds: Proteins were (1) labeled with a thiol-specific probe, monobromobimane (mBBr), following in vitro reduction by an NADP/Trx system, or (2) isolated on a mutant Trx affinity column. Altogether, 111 Trx-linked proteins were identified with few differences between axes and cotyledons. Fifty nine were new, 34 found previously in cereal or peanut seeds, and 18 in other plants or photosynthetic organisms. In parallel, the redox state of proteins assessed in germinating seeds using mBBr revealed that a substantial number of proteins that are oxidized or partly reduced in dry seeds became more reduced upon germination. The patterns were similar for proteins reduced in vivo during germination or in vitro by Trx. In contrast, glutathione and glutaredoxin were less effective as reductants in vitro. Overall, more than half of the potential targets identified with the mBBr labeling procedure were reduced during germination. The results provide evidence that Trx functions in the germination of seeds of dicotyledons as well as monocotyledons.


Asunto(s)
Germinación/fisiología , Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Proteómica , Semillas/metabolismo , Tiorredoxinas/metabolismo , Adaptación Fisiológica , Adenosina Trifosfato/metabolismo , Aminoácidos/biosíntesis , Compuestos Bicíclicos con Puentes , Carbono/metabolismo , Proteínas Portadoras/metabolismo , Pared Celular/metabolismo , Cotiledón/metabolismo , Disulfuros/metabolismo , Medicago truncatula/crecimiento & desarrollo , Oxidación-Reducción , Proteínas de Plantas/biosíntesis , Proteoma , Transducción de Señal/fisiología , Vitaminas/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA