Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
JID Innov ; 4(4): 100282, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38859975

RESUMEN

ROS are involved in the pathogenesis of bullous pemphigoid (BP), but this involvement has not been fully elucidated. In this study, to further elucidate the pathogenic role of ROS in BP, we examined the results of the diacron-reactive oxygen metabolite test and the biological antioxidant potential test for 16 patients with BP who visited our hospital before being treated with systemic corticosteroids. In the patients with BP, the average diacron-reactive oxygen metabolite levels, expressed in Carratelli units, were significantly reduced at 1 month of treatment (from 335.6 ± 40.3 Carratelli units to 224.7 ± 61.6 Carratelli units, P < .001). Bullous Pemphigoid Disease Area Index (erosions/blisters) scores correlated with diacron-reactive oxygen metabolite levels (r = 0.51), suggesting that those levels reflect the disease severity. We also performed staining of 3,5-dibromotyrosine in skin tissues. The 3,5-dibromotyrosine is expected to be a marker of tissue damage related to inflammation and allergies. The 3,5-dibromotyrosine was stained in infiltrated cells around the dermis, throughout the blister fluid, and at the basement membrane within the blister. It is considered that tissue destruction caused by the myeloperoxidase released from neutrophils and by eosinophil peroxidase released from eosinophils is involved in blister formation. The results suggest that ROS play a role in BP.

3.
J Biol Chem ; 300(6): 107409, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38796063

RESUMEN

About 18% of all human cancers carry a mutation in the KRAS gene making it among the most sought-after anticancer targets. However, mutant KRas protein has proved remarkably undruggable. The recent approval of the first generation of RAS inhibitors therefore marks a seminal milestone in the history of cancer research. It also raises the predictable challenges of limited drug efficacies and acquired resistance. Hence, new approaches that improve our understanding of the tumorigenic mechanisms of oncogenic RAS within more physiological settings continue to be essential. Here, we have used the near-diploid hTERT RPE-1 cells to generate isogenic cell lines in which one of the endogenous KRAS alleles carries an oncogenic KRAS mutation at glycine 12. Cells with a KRASG12V/+, KRASG12C/+, or KRASG12D/+ genotype, together with WT KRASG12G(WT)/+ cells, reveal that oncogenic KRAS.G12X mutations increase cell proliferation rate and cell motility and reduced focal adhesions in KRASG12V/+ cells. Epidermal growth factor -induced phosphorylation of ERK and AKT was comparable between KRASG12V/+, KRASG12C/+, KRASG12D/+, and KRASG12G(WT)/+ cells. Interestingly, KRASG12X/+ cells showed varying responses to distinct inhibitors with the KRASG12V/+ and KRASG12D/+ cells more sensitive to hydroxyurea and MEK inhibitors, U0126 and trametinib, but more resistant to PI3K inhibitor, PIK-90, than the KRASG12G(WT)/+ cells. A combination of low doses of hydroxyurea and U0126 showed an additive inhibition on growth rate that was greater in KRASG12V/+ than WT cells. Collectively, these cell lines will be a valuable resource for studying oncogenic RAS signaling and developing effective anti-KRAS reagents with minimum cytotoxicity on WT cells.


Asunto(s)
Movimiento Celular , Proliferación Celular , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Movimiento Celular/efectos de los fármacos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proliferación Celular/efectos de los fármacos , Telomerasa/genética , Telomerasa/metabolismo , Proteínas ras/metabolismo , Proteínas ras/genética , Pirimidinonas/farmacología , Piridonas/farmacología , Mutación Missense , Línea Celular , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Nitrilos/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Butadienos/farmacología , Sustitución de Aminoácidos , Mutación
4.
J Dermatol ; 51(5): 643-648, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38482975

RESUMEN

Bullous pemphigoid (BP), an autoimmune subepidermal blistering disease, shows tense blisters associated with urticarial erythema. Tissue-bound Immunoglobulin G (IgG) at the basement membrane zone (BMZ) detected by direct immunofluorescence (DIF) is strong evidence for a diagnosis of BP. The sensitivity of DIF is higher in complement component 3 (C3) than in IgG, but the reason for this different sensitivity is not fully understood. In this study, we performed several ex vivo studies to investigate the possible mechanism of IgG negativity and C3 positivity at the BMZ by DIF in some BP cases. First, sera from BP patients showing IgG negativity by DIF were found to clearly react to the BMZ in their own DIF skin samples. Next, indirect immunofluorescence (IIF) was performed using sera diluted with different pH phosphate-buffered saline (PBS), pH 7.4, 6.0, and 3.0. Patients' sera diluted with pH 7.4 PBS showed linear staining at the BMZ, but sera diluted with pH 6.0 PBS and pH 3.0 PBS showed lower fluorescence intensities. Finally, sections of skin from BP patients were pre-incubated with different pH PBS (pH 3.0, 6.0, and 7.4), followed by staining with anti-human IgG and C3. The fluorescence intensities were notably lower for IgG and C3 that had been pre-incubated with pH 3.0 PBS and pH 6.0 PBS than for IgG and C3 that had been pre-incubated with pH 7.4 PBS. These results suggest that a low pH condition hinders the binding of autoantibodies to the BMZ, that is, the drop in tissue pH induced by inflammation inhibits autoantibodies from depositing at the BMZ. Furthermore, the drop in tissue pH causes tissue-bound autoantibodies to detach from the BMZ. Complement fragments are activated not only on IgG but also on the cell surface of cells close to IgG during complement activation. IgG may detach from the BMZ under low pH condition induced by inflammation, but some complement fragments remain at the BMZ. These phenomena may help to explain why C3 is more sensitive than IgG when DIF is used to diagnose BP.


Asunto(s)
Membrana Basal , Complemento C3 , Inmunoglobulina G , Penfigoide Ampolloso , Humanos , Membrana Basal/inmunología , Membrana Basal/metabolismo , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/metabolismo , Concentración de Iones de Hidrógeno , Penfigoide Ampolloso/inmunología , Penfigoide Ampolloso/diagnóstico , Penfigoide Ampolloso/patología , Complemento C3/inmunología , Complemento C3/metabolismo , Masculino , Femenino , Anciano , Autoanticuerpos/inmunología , Autoanticuerpos/sangre , Técnica del Anticuerpo Fluorescente Directa , Piel/inmunología , Piel/patología , Técnica del Anticuerpo Fluorescente Indirecta , Anciano de 80 o más Años , Persona de Mediana Edad
5.
Life Sci Alliance ; 7(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37833074

RESUMEN

About a quarter of total human cancers carry mutations in Ras isoforms. Accumulating evidence suggests that small GTPases, RalA, and RalB, and their activators, Ral guanine nucleotide exchange factors (RalGEFs), play an essential role in oncogenic Ras-induced signalling. We studied the interaction between human KRas4B and the Ras association (RA) domain of Rgl2 (Rgl2RA), one of the RA-containing RalGEFs. We show that the G12V oncogenic KRas4B mutation changes the interaction kinetics with Rgl2RA The crystal structure of the KRas4BG12V: Rgl2RA complex shows a 2:2 heterotetramer where the switch I and switch II regions of each KRasG12V interact with both Rgl2RA molecules. This structural arrangement is highly similar to the HRasE31K:RALGDSRA crystal structure and is distinct from the well-characterised Ras:Raf complex. Interestingly, the G12V mutation was found at the dimer interface of KRas4BG12V with its partner. Our study reveals a potentially distinct mode of Ras:effector complex formation by RalGEFs and offers a possible mechanistic explanation for how the oncogenic KRas4BG12V hyperactivates the RalA/B pathway.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Humanos , Proteínas de Unión al GTP Monoméricas/metabolismo , Transducción de Señal/genética , Isoformas de Proteínas/metabolismo , Genes ras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA