Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Cell Metab ; 36(5): 1044-1058.e10, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38452767

RESUMEN

Obesity is often associated with aging. However, the mechanism of age-related obesity is unknown. The melanocortin-4 receptor (MC4R) mediates leptin-melanocortin anti-obesity signaling in the hypothalamus. Here, we discovered that MC4R-bearing primary cilia of hypothalamic neurons progressively shorten with age in rats, correlating with age-dependent metabolic decline and increased adiposity. This "age-related ciliopathy" is promoted by overnutrition-induced upregulation of leptin-melanocortin signaling and inhibited or reversed by dietary restriction or the knockdown of ciliogenesis-associated kinase 1 (CILK1). Forced shortening of MC4R-bearing cilia in hypothalamic neurons by genetic approaches impaired neuronal sensitivity to melanocortin and resulted in decreased brown fat thermogenesis and energy expenditure and increased appetite, finally developing obesity and leptin resistance. Therefore, despite its acute anti-obesity effect, chronic leptin-melanocortin signaling increases susceptibility to obesity by promoting the age-related shortening of MC4R-bearing cilia. This study provides a crucial mechanism for age-related obesity, which increases the risk of metabolic syndrome.


Asunto(s)
Cilios , Leptina , Neuronas , Obesidad , Receptor de Melanocortina Tipo 4 , Animales , Receptor de Melanocortina Tipo 4/metabolismo , Receptor de Melanocortina Tipo 4/genética , Cilios/metabolismo , Cilios/patología , Obesidad/metabolismo , Obesidad/patología , Neuronas/metabolismo , Neuronas/patología , Leptina/metabolismo , Ratas , Masculino , Transducción de Señal , Hipotálamo/metabolismo , Envejecimiento/metabolismo , Envejecimiento/patología , Ratas Sprague-Dawley , Ratones , Metabolismo Energético , Tejido Adiposo Pardo/metabolismo , Termogénesis
2.
J Exp Med ; 220(11)2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37725372

RESUMEN

Accumulation of lipotoxic lipids, such as free cholesterol, induces hepatocyte death and subsequent inflammation and fibrosis in the pathogenesis of nonalcoholic steatohepatitis (NASH). However, the underlying mechanisms remain unclear. We have previously reported that hepatocyte death locally induces phenotypic changes in the macrophages surrounding the corpse and remnant lipids, thereby promoting liver fibrosis in a murine model of NASH. Here, we demonstrated that lysosomal cholesterol overload triggers lysosomal dysfunction and profibrotic activation of macrophages during the development of NASH. ß-cyclodextrin polyrotaxane (ßCD-PRX), a unique supramolecule, is designed to elicit free cholesterol from lysosomes. Treatment with ßCD-PRX ameliorated cholesterol accumulation and profibrotic activation of macrophages surrounding dead hepatocytes with cholesterol crystals, thereby suppressing liver fibrosis in a NASH model, without affecting the hepatic cholesterol levels. In vitro experiments revealed that cholesterol-induced lysosomal stress triggered profibrotic activation in macrophages predisposed to the steatotic microenvironment. This study provides evidence that dysregulated cholesterol metabolism in macrophages would be a novel mechanism of NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Modelos Animales de Enfermedad , Cirrosis Hepática , Macrófagos , Colesterol , Lisosomas
3.
Biosci Biotechnol Biochem ; 87(10): 1093-1101, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37403377

RESUMEN

Gibberellins (GAs) are plant hormones with a tetracyclic diterpenoid structure that are involved in various important developmental processes. Two GA-deficient mutants were isolated: a semidwarf mutant "sd1", which was found to have a defective GA20ox2 gene and was introduced to the world in a green revolution cultivar, and a severe dwarf allele of "d18", with a defective GA3ox2 gene. Based on the phenotypic similarity of d18, rice dwarf mutants were screened, further classifying them into GA-sensitive and GA-insensitive by applying exogenous GA3. Finally, GA-deficient rice mutants at 6 different loci and 3 GA signaling mutants (gid1, gid2, and slr1) were isolated. The GID1 gene encodes a GA nuclear receptor, and the GID1-DELLA (SLR1) system for GA perception is widely used in vascular plants. The structural characteristics of GID1 and GA metabolic enzymes have also been reviewed.


Asunto(s)
Giberelinas , Oryza , Giberelinas/metabolismo , Proteínas de Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal/genética , Oryza/genética , Oryza/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Cell Death Dis ; 14(2): 136, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864028

RESUMEN

Macrophages are important components in modulating homeostatic and inflammatory responses and are generally categorized into two broad but distinct subsets: classical activated (M1) and alternatively activated (M2) depending on the microenvironment. Fibrosis is a chronic inflammatory disease exacerbated by M2 macrophages, although the detailed mechanism by which M2 macrophage polarization is regulated remains unclear. These polarization mechanisms have little in common between mice and humans, making it difficult to adapt research results obtained in mice to human diseases. Tissue transglutaminase (TG2) is a known marker common to mouse and human M2 macrophages and is a multifunctional enzyme responsible for crosslinking reactions. Here we sought to identify the role of TG2 in macrophage polarization and fibrosis. In IL-4-treated macrophages derived from mouse bone marrow and human monocyte cells, the expression of TG2 was increased with enhancement of M2 macrophage markers, whereas knockout or inhibitor treatment of TG2 markedly suppressed M2 macrophage polarization. In the renal fibrosis model, accumulation of M2 macrophages in fibrotic kidney was significantly reduced in TG2 knockout or inhibitor-administrated mice, along with the resolution of fibrosis. Bone marrow transplantation using TG2-knockout mice revealed that TG2 is involved in M2 polarization of infiltrating macrophages derived from circulating monocytes and exacerbates renal fibrosis. Furthermore, the suppression of renal fibrosis in TG2-knockout mice was abolished by transplantation of wild-type bone marrow or by renal subcapsular injection of IL4-treated macrophages derived from bone marrow of wild-type, but not TG2 knockout. Transcriptome analysis of downstream targets involved in M2 macrophages polarization revealed that ALOX15 expression was enhanced by TG2 activation and promoted M2 macrophage polarization. Furthermore, the increase in the abundance of ALOX15-expressing macrophages in fibrotic kidney was dramatically suppressed in TG2-knockout mice. These findings demonstrated that TG2 activity exacerbates renal fibrosis by polarization of M2 macrophages from monocytes via ALOX15.


Asunto(s)
Enfermedades Renales , Proteína Glutamina Gamma Glutamiltransferasa 2 , Humanos , Animales , Ratones , Macrófagos , Monocitos , Riñón
5.
Nutrients ; 15(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36678220

RESUMEN

The molecular pathogenesis of nonalcoholic steatohepatitis (NASH) includes a complex interaction of metabolic stress and inflammatory stimuli. Considering the therapeutic goals of NASH, it is important to determine whether the treatment can prevent the progression from NASH to hepatocellular carcinoma. Taxifolin, also known as dihydroquercetin, is a natural bioactive flavonoid with antioxidant and anti-inflammatory properties commonly found in various foods and health supplement products. In this study, we demonstrated that Taxifolin treatment markedly prevented the development of hepatic steatosis, chronic inflammation, and liver fibrosis in a murine model of NASH. Its mechanisms include a direct action on hepatocytes to inhibit lipid accumulation. Taxifolin also increased brown adipose tissue activity and suppressed body weight gain through at least two distinct pathways: direct action on brown adipocytes and indirect action via fibroblast growth factor 21 production in the liver. Notably, the Taxifolin treatment after NASH development could effectively prevent the development of liver tumors. Collectively, this study provides evidence that Taxifolin shows pleiotropic effects for the treatment of the NASH continuum. Our data also provide insight into the novel mechanisms of action of Taxifolin, which has been widely used as a health supplement with high safety.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/etiología , Hígado/metabolismo , Obesidad/metabolismo , Carcinogénesis/metabolismo , Transformación Celular Neoplásica/patología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
6.
JCI Insight ; 8(2)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36480287

RESUMEN

Medium-chain triglycerides (MCTs), which consist of medium-chain fatty acids (MCFAs), are unique forms of dietary fat with various health benefits. G protein-coupled 84 (GPR84) acts as a receptor for MCFAs (especially C10:0 and C12:0); however, GPR84 is still considered an orphan receptor, and the nutritional signaling of endogenous and dietary MCFAs via GPR84 remains unclear. Here, we showed that endogenous MCFA-mediated GPR84 signaling protected hepatic functions from diet-induced lipotoxicity. Under high-fat diet (HFD) conditions, GPR84-deficient mice exhibited nonalcoholic steatohepatitis (NASH) and the progression of hepatic fibrosis but not steatosis. With markedly increased hepatic MCFA levels under HFD, GPR84 suppressed lipotoxicity-induced macrophage overactivation. Thus, GPR84 is an immunomodulating receptor that suppresses excessive dietary fat intake-induced toxicity by sensing increases in MCFAs. Additionally, administering MCTs, MCFAs (C10:0 or C12:0, but not C8:0), or GPR84 agonists effectively improved NASH in mouse models. Therefore, exogenous GPR84 stimulation is a potential strategy for treating NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Receptores Acoplados a Proteínas G , Ratones , Animales , Receptores Acoplados a Proteínas G/agonistas , Ácidos Grasos , Grasas de la Dieta/farmacología , Triglicéridos , Cirrosis Hepática
7.
Inflamm Regen ; 42(1): 13, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35490239

RESUMEN

Chronic inflammation is currently considered as a molecular basis of metabolic syndrome. Particularly, obesity-induced inflammation in adipose tissue is the origin of chronic inflammation of metabolic syndrome. Adipose tissue contains not only mature adipocytes with large lipid droplets, but also a variety of stromal cells including adipocyte precursors, vascular component cells, immune cells, and fibroblasts. However, crosstalk between those various cell types in adipose tissue in obesity still remains to be fully understood. We focus on two innate immune receptors, Toll-like receptor 4 (TLR4) and macrophage-inducible C-type lectin (Mincle). We provided evidence that adipocyte-derived saturated fatty acids (SFAs) activate macrophage TLR4 signaling pathway, thereby forming a vicious cycle of inflammatory responses during the development of obesity. Intriguingly, the TLR4 signaling pathway is modulated metabolically and epigenetically: SFAs augment TLR4 signaling through the integrated stress response and chromatin remodeling, such as histone methylation, regulates dynamic transcription patterns downstream of TLR4 signaling. Another innate immune receptor Mincle senses cell death, which is a trigger of chronic inflammatory diseases including obesity. Macrophages form a histological structure termed "crown-like structure (CLS)", in which macrophages surround dead adipocytes to engulf cell debris and residual lipids. Mincle is exclusively expressed in macrophages forming the CLS in obese adipose tissue and regulates adipocyte death-triggered adipose tissue fibrosis. In addition to adipose tissue, we found a structure similar to CLS in the liver of nonalcoholic steatohepatitis (NASH) and the kidney after acute kidney injury. This review article highlights the recent progress of the crosstalk between immune and metabolic systems in metabolic syndrome, with a focus on innate immune receptors.

8.
Gels ; 8(2)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35200456

RESUMEN

Recently, phenylboronic acid (PBA) gel containing microneedle (MN) technology with acute and sustained glucose-sensitive functionality has attracted significant research attention. Herein, we report a polyvinyl alcohol(PVA)-coated MNs patch with an interconnected porous gel drug reservoir for enhanced skin penetration efficiency and mechanical strength. The hybrid MNs patch fabricated with a novel, efficient method displayed a "cake-like" two-layer structure, with the tip part being composed of boronate-containing smart gel attached to a porous gel layer as a drug reservoir. The porous structure provides the necessary structural support for skin insertion and space for insulin loading. The mechanical strength of the hybrid MNs patch was further enhanced by surface coating with crystallized PVA. Compared with MNs patches attached to hollow drug reservoirs, this hybrid MNs patch with a porous gel reservoir was shown to be able to penetrate the skin more effectively, and is promising for on-demand, long-acting transdermal insulin delivery with increased patient compliance.

9.
Commun Biol ; 5(1): 67, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35046494

RESUMEN

Proper anther and pollen development are important for plant reproduction. The plant hormone gibberellin is important for anther development in rice, but its gametophytic functions remain largely unknown. Here, we report the functional and evolutionary analyses of rice gibberellin 3-oxidase 1 (OsGA3ox1), a gibberellin synthetic enzyme specifically expressed in the late developmental stages of anthers. Enzymatic and X-ray crystallography analyses reveal that OsGA3ox1 has a higher GA7 synthesis ratio than OsGA3ox2. In addition, we generate an osga3ox1 knockout mutant by genome editing and demonstrate the bioactive gibberellic acid synthesis by the OsGA3ox1 action during starch accumulation in pollen via invertase regulation. Furthermore, we analyze the evolution of Oryza GA3ox1s and reveal that their enzyme activity and gene expression have evolved in a way that is characteristic of the Oryza genus and contribute to their male reproduction ability.


Asunto(s)
Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Oxigenasas de Función Mixta/genética , Oryza/genética , Proteínas de Plantas/genética , Genes de Plantas , Oxigenasas de Función Mixta/metabolismo , Oryza/enzimología , Proteínas de Plantas/metabolismo
10.
Transplant Proc ; 54(2): 513-515, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35039159

RESUMEN

BACKGROUND: Human amniotic epithelial cells (hAECs) are increasingly gaining attention as novel sources for cell transplantation. In clinical practice, intraportal infusion is considered one of the leading approaches for transplantation; however, this has not yet been validated for in vivo transplantation of hAECs. Thus, this study aims to investigate the distribution of hAECs post intraportal infusion and compare this distribution with other cell administration routes. METHODS: Wistar/ST rats were divided into 4 groups (n = 3 for each) based on cell administration route: group 1, intraportal; group 2, the spleen; group 3, tail veins; and group 4, penile veins. Subsequently, hAECs (1 × 107) stained with XenoLight DiR were infused into each recipient. Cell distribution was evaluated using an in vivo imaging system. RESULTS: DiR signals were detected in the rat livers of groups 1 and 2 with those in group 2 being much weaker than those in group 1. Necrosis of small intestine was observed in 2 cases in group 2. DiR signals were detected in the lungs in groups 3 and 4 because of systemic circulation; however, all the animals died within 20 minutes of infusions. CONCLUSIONS: Intraportal infusion is potentially applicable for safe and efficient transplantation of hAECs into the liver, whereas hAECs administration via the spleen carries a risk of thrombosis in a narrow portal vein system. Our results also indicate that hAECs administration via the systemic circulation could cause pulmonary embolism in clinical settings.


Asunto(s)
Hígado , Vena Porta , Animales , Células Epiteliales , Humanos , Ratas , Ratas Wistar , Bazo
11.
Front Immunol ; 12: 650856, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34211460

RESUMEN

Accumulating evidence suggests that cholesterol accumulation in leukocytes is causally associated with the development of autoimmune diseases. However, the mechanism by which fatty acid composition influences autoimmune responses remains unclear. To determine whether the fatty acid composition of diet modulates leukocyte function and the development of systemic lupus erythematosus, we examined the effect of eicosapentaenoic acid (EPA) on the pathology of lupus in drug-induced and spontaneous mouse models. We found that dietary EPA supplementation ameliorated representative lupus manifestations, including autoantibody production and immunocomplex deposition in the kidneys. A combination of lipidomic and membrane dynamics analyses revealed that EPA remodels the lipid composition and fluidity of B cell membranes, thereby preventing B cell differentiation into autoantibody-producing plasma cells. These results highlight a previously unrecognized mechanism by which fatty acid composition affects B cell differentiation into autoantibody-producing plasma cells during autoimmunity, and imply that EPA supplementation may be beneficial for therapy of lupus.


Asunto(s)
Autoinmunidad/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Suplementos Dietéticos , Ácido Eicosapentaenoico/farmacología , Lupus Eritematoso Sistémico/prevención & control , Células Plasmáticas/efectos de los fármacos , Animales , Autoanticuerpos/inmunología , Autoanticuerpos/metabolismo , Autoinmunidad/inmunología , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Linfocitos B/metabolismo , Diferenciación Celular/inmunología , Células Cultivadas , Modelos Animales de Enfermedad , Ácido Eicosapentaenoico/administración & dosificación , Femenino , Riñón/efectos de los fármacos , Riñón/inmunología , Riñón/patología , Lupus Eritematoso Sistémico/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo
12.
Sci Rep ; 11(1): 11137, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34045514

RESUMEN

A growing body of evidence indicates that cellular metabolism is involved in immune cell functions, including cytokine production. Serine is a nutritionally non-essential amino acid that can be generated by de novo synthesis and conversion from glycine. Serine contributes to various cellular responses, but the role in inflammatory responses remains poorly understood. Here, we show that macrophages rely on extracellular serine to suppress aberrant cytokine production. Depleting serine from the culture media reduced the cellular serine content in macrophages markedly, suggesting that macrophages depend largely on extracellular serine rather than cellular synthesis. Under serine deprivation, macrophages stimulated with lipopolysaccharide showed aberrant cytokine expression patterns, including a marked reduction of anti-inflammatory interleukin-10 expression and sustained expression of interleukine-6. Transcriptomic and metabolomics analyses revealed that serine deprivation causes mitochondrial dysfunction: reduction in the pyruvate content, the NADH/NAD+ ratio, the oxygen consumption rate, and the mitochondrial production of reactive oxygen species (ROS). We also found the role of mitochondrial ROS in appropriate cytokine production. Thus, our results indicate that cytokine production in macrophages is tightly regulated by the nutritional microenvironment.


Asunto(s)
Citocinas/metabolismo , Macrófagos/metabolismo , Mitocondrias/metabolismo , Serina/metabolismo , Animales , Metabolómica , Ratones , Consumo de Oxígeno/fisiología , Especies Reactivas de Oxígeno/metabolismo
13.
Biomed Pharmacother ; 140: 111738, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34029949

RESUMEN

BACKGROUND: Diabetes and obesity contribute to the pathogenesis of nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC). However, how diabetes and obesity accelerate liver tumorigenesis remains to be fully understood. Moreover, to verify the therapeutic potential of anti-diabetic drugs, there exists a strong need for appropriate animal models that recapitulate human pathophysiology of NASH and HCC. METHODS: We established a novel murine model of NASH-associated liver tumors using genetically obese melanocortin 4 receptor-deficient mice fed on Western diet in combination with a chemical procarcinogen, and verified the validity of our model in evaluating drug efficacy. FINDINGS: Our model developed multiple liver tumors together with obesity, diabetes, and NASH within a relatively short period (approximately 3 months). In this model, sodium glucose cotransporter 2 inhibitor Tofogliflozin prevented the development of NASH-like liver phenotypes and the progression of liver tumors. Tofogliflozin attenuated p21 expression of hepatocytes in non-tumorous lesions in the liver. INTERPRETATION: Tofogliflozin treatment attenuates cellular senescence of hepatocytes under obese and diabetic conditions. This study provides a unique animal model of NASH-associated liver tumors, which is applicable for assessing drug efficacy to prevent or treat NASH-associated HCC.


Asunto(s)
Compuestos de Bencidrilo/uso terapéutico , Glucósidos/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Animales , Compuestos de Bencidrilo/farmacología , Glucemia/análisis , Senescencia Celular/efectos de los fármacos , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/etiología , Diabetes Mellitus Experimental/patología , Dieta Occidental , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Glucósidos/farmacología , Hepatocitos/efectos de los fármacos , Insulina/sangre , Hígado/efectos de los fármacos , Hígado/patología , Neoplasias Hepáticas/sangre , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/patología , Obesidad/sangre , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Obesidad/patología , Receptor de Melanocortina Tipo 4/genética , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología
14.
iScience ; 24(2): 102032, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33521599

RESUMEN

Although recent evidence suggests the involvement of iron accumulation in the pathogenesis of nonalcoholic steatohepatitis (NASH), the underlying mechanisms remain poorly understood. Previously, we reported a unique histological structure termed "crown-like structure (CLS)," where liver-resident macrophages (Kupffer cells) surround dead hepatocytes, scavenge their debris, and induce inflammation and fibrosis in NASH. In this study, using magnetic column separation, we show that iron-rich Kupffer cells exhibit proinflammatory and profibrotic phenotypic changes during the development of NASH, at least partly, through activation of MiT/TFE transcription factors. Activation of MiT/TFE transcription factors is observed in Kupffer cells forming CLSs in murine and human NASH. Iron chelation effectively attenuates liver fibrosis in a murine NASH model. This study provides insight into the pathophysiologic role of iron in NASH. Our data also shed light on a unique macrophage subset rich in iron that contributes to CLS formation and serves as a driver of liver fibrosis.

15.
Sci Adv ; 6(51)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33355142

RESUMEN

Rs671 in the aldehyde dehydrogenase 2 gene (ALDH2) is the cause of Asian alcohol flushing response after drinking. ALDH2 detoxifies endogenous aldehydes, which are the major source of DNA damage repaired by the Fanconi anemia pathway. Here, we show that the rs671 defective allele in combination with mutations in the alcohol dehydrogenase 5 gene, which encodes formaldehyde dehydrogenase (ADH5FDH ), causes a previously unidentified disorder, AMeD (aplastic anemia, mental retardation, and dwarfism) syndrome. Cellular studies revealed that a decrease in the formaldehyde tolerance underlies a loss of differentiation and proliferation capacity of hematopoietic stem cells. Moreover, Adh5-/-Aldh2 E506K/E506K double-deficient mice recapitulated key clinical features of AMeDS, showing short life span, dwarfism, and hematopoietic failure. Collectively, our results suggest that the combined deficiency of formaldehyde clearance mechanisms leads to the complex clinical features due to overload of formaldehyde-induced DNA damage, thereby saturation of DNA repair processes.

16.
Plant Cell Physiol ; 61(11): 1935-1945, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33104219

RESUMEN

Translocation and long-distance transport of phytohormones are considered important processes for phytohormone responses, as well as their synthesis and signaling. Here, we report on the dual function of OsSWEET3a, a bidirectional sugar transporter from clade I of the rice SWEET family of proteins, as both a gibberellin (GA) and a glucose transporter. OsSWEET3a efficiently transports GAs in the C13-hydroxylation pathway of GA biosynthesis. Both knockout and overexpression lines of OsSWEET3a showed defects in germination and early shoot development, which were partially restored by GA, especially GA20. Quantitative reverse transcription PCR, GUS staining and in situ hybridization revealed that OsSWEET3a was expressed in vascular bundles in basal parts of the seedlings. OsSWEET3a expression was co-localized with OsGA20ox1 expression in the vascular bundles but not with OsGA3ox2, whose expression was restricted to leaf primordia and young leaves. These results suggest that OsSWEET3a is expressed in the vascular tissue of basal parts of seedlings and is involved in the transport of both GA20 and glucose to young leaves, where GA20 is possibly converted to the bioactive GA1 form by OsGA3ox2, during early plant development. We also indicated that such GA transport activities of SWEET proteins have sporadically appeared in the evolution of plants: GA transporters in Arabidopsis have evolved from sucrose transporters, while those in rice and sorghum have evolved from glucose transporters.


Asunto(s)
Giberelinas/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/fisiología , Oryza/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/fisiología , Brotes de la Planta/crecimiento & desarrollo , Glucosa/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Oryza/metabolismo , Oryza/fisiología , Reguladores del Crecimiento de las Plantas/fisiología , Proteínas de Plantas/metabolismo , Brotes de la Planta/metabolismo , Brotes de la Planta/fisiología , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Plantones/fisiología
17.
J Exp Med ; 217(11)2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32797195

RESUMEN

Accumulating evidence indicates that cell death triggers sterile inflammation and that impaired clearance of dead cells causes nonresolving inflammation; however, the underlying mechanisms are still unclear. Here, we show that macrophage-inducible C-type lectin (Mincle) senses renal tubular cell death to induce sustained inflammation after acute kidney injury in mice. Mincle-deficient mice were protected against tissue damage and subsequent atrophy of the kidney after ischemia-reperfusion injury. Using lipophilic extract from the injured kidney, we identified ß-glucosylceramide as an endogenous Mincle ligand. Notably, free cholesterol markedly enhanced the agonistic effect of ß-glucosylceramide on Mincle. Moreover, ß-glucosylceramide and free cholesterol accumulated in dead renal tubules in proximity to Mincle-expressing macrophages, where Mincle was supposed to inhibit clearance of dead cells and increase proinflammatory cytokine production. This study demonstrates that ß-glucosylceramide in combination with free cholesterol acts on Mincle as an endogenous ligand to induce cell death-triggered, sustained inflammation after acute kidney injury.


Asunto(s)
Lesión Renal Aguda/metabolismo , Muerte Celular/genética , Lectinas Tipo C/metabolismo , Proteínas de la Membrana/metabolismo , Lesión Renal Aguda/inmunología , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Glucosilceramidasa/metabolismo , Proteínas Fluorescentes Verdes/genética , Inflamación/metabolismo , Lectinas Tipo C/deficiencia , Lectinas Tipo C/genética , Ligandos , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/genética , Transducción de Señal/inmunología
18.
Commun Biol ; 3(1): 302, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32528064

RESUMEN

Panicle architecture directly affects crop productivity and is a key target of high-yield rice breeding. Panicle length strongly affects panicle architecture, but the underlying regulatory mechanisms are largely unknown. Here, we show that two quantitative trait loci (QTLs), PANICLE RACHIS LENGTH5 (Prl5) and PRIMARY BRANCH LENGTH6 (Pbl6), independently regulate panicle length in rice. Prl5 encodes a gibberellin biosynthesis enzyme, OsGA20ox4. The expression of Prl5 was higher in young panicles resulting in panicle rachis elongation. Pbl6 is identical to ABERRANT PANICLE ORGANIZATION 1 (APO1), encoding an F-box-containing protein. We found a novel function that higher expression of Pbl6 is responsible for primary branch elongation. RNA-seq analysis revealed that these two genes independently regulate panicle length at the level of gene expression. QTL pyramiding of both genes increased panicle length and productivity. By combining these two genes in various combinations, we designed numerous panicle architecture without trade-off relationship.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza/anatomía & histología , Proteínas de Plantas/genética , Tallos de la Planta/anatomía & histología , Sitios de Carácter Cuantitativo , Alelos , Oryza/genética , Oryza/crecimiento & desarrollo , Fitomejoramiento , Proteínas de Plantas/metabolismo , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , RNA-Seq
19.
Commun Biol ; 3(1): 313, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32555343

RESUMEN

Accumulating evidence demonstrates that not only sustained elevation of blood glucose levels but also the glucose fluctuation represents key determinants for diabetic complications and mortality. Current closed-loop insulin therapy option is limited to the use of electronics-based systems, although it poses some technical issues with high cost. Here we demonstrate an electronics-free, synthetic boronate gel-based insulin-diffusion-control device technology that can cope with glucose fluctuations and potentially address the electronics-derived issues. The gel was combined with hemodialysis hollow fibers and scaled suitable for rats, serving as a subcutaneously implantable, insulin-diffusion-active site in a manner dependent on the subcutaneous glucose. Continuous glucose monitoring tests revealed that our device not only normalizes average glucose level of rats, but also markedly ameliorates the fluctuations over timescale of a day without inducing hypoglycemia. With inherent stability, diffusion-dependent scalability, and week-long & acute glucose-responsiveness, our technology may offer a low-cost alternative to current electronics-based approaches.


Asunto(s)
Glucemia/metabolismo , Geles/química , Sistemas de Infusión de Insulina , Insulina/administración & dosificación , Animales , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Liberación de Fármacos , Electrónica , Diseño de Equipo , Insulina/farmacocinética , Insulina Regular Humana/administración & dosificación , Insulina Regular Humana/genética , Riñones Artificiales , Masculino , Modelos Teóricos , Ratas Sprague-Dawley , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...