Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Infect Dis ; 10(5): 1739-1752, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38647213

RESUMEN

Reverse analogs of the phosphonohydroxamic acid antibiotic fosmidomycin are potent inhibitors of the nonmevalonate isoprenoid biosynthesis enzyme 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR, IspC) of Plasmodium falciparum. Some novel analogs with large phenylalkyl substituents at the hydroxamic acid nitrogen exhibit nanomolar PfDXR inhibition and potent in vitro growth inhibition of P. falciparum parasites coupled with good parasite selectivity. X-ray crystallographic studies demonstrated that the N-phenylpropyl substituent of the newly developed lead compound 13e is accommodated in a subpocket within the DXR catalytic domain but does not reach the NADPH binding pocket of the N-terminal domain. As shown for reverse carba and thia analogs, PfDXR selectively binds the S-enantiomer of the new lead compound. In addition, some representatives of the novel inhibitor subclass are nanomolar Escherichia coli DXR inhibitors, whereas the inhibition of Mycobacterium tuberculosis DXR is considerably weaker.


Asunto(s)
Isomerasas Aldosa-Cetosa , Antimaláricos , Fosfomicina , Ácidos Hidroxámicos , Complejos Multienzimáticos , Plasmodium falciparum , Fosfomicina/farmacología , Fosfomicina/análogos & derivados , Fosfomicina/química , Isomerasas Aldosa-Cetosa/antagonistas & inhibidores , Isomerasas Aldosa-Cetosa/metabolismo , Isomerasas Aldosa-Cetosa/química , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Ácidos Hidroxámicos/farmacología , Ácidos Hidroxámicos/química , Antimaláricos/farmacología , Antimaláricos/química , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/metabolismo , Complejos Multienzimáticos/química , Cristalografía por Rayos X , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Relación Estructura-Actividad , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/enzimología , Modelos Moleculares , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Dominio Catalítico , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/metabolismo
2.
J Biochem ; 174(5): 461-476, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37540843

RESUMEN

The nucleolus is a membrane-less nuclear body that typically forms through the process of liquid-liquid phase separation (LLPS) involving its components. NPM1 drives LLPS within the nucleolus and its oligomer formation and inter-oligomer interactions play a cooperative role in inducing LLPS. However, the molecular mechanism underlaying the regulation of liquid droplet quality formed by NPM1 remains poorly understood. In this study, we demonstrate that the N-terminal and central acidic residues within the intrinsically disordered regions (IDR) of NPM1 contribute to attenuating oligomer stability, although differences in the oligomer stability were observed only under stringent conditions. Furthermore, the impact of the IDRs is augmented by an increase in net negative charges resulting from phosphorylation within the IDRs. Significantly, we observed an increase in fluidity of liquid droplets formed by NPM1 with decreased oligomer stability. These results indicate that the difference in oligomer stability only observed biochemically under stringent conditions has a significant impact on liquid droplet quality formed by NPM1. Our findings provide new mechanistic insights into the regulation of nucleolar dynamics during the cell cycle.


Asunto(s)
Nucléolo Celular , Proteínas Intrínsecamente Desordenadas , Dominios Proteicos , Nucléolo Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Intrínsecamente Desordenadas/análisis
3.
J Med Chem ; 66(13): 9023-9039, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37314161

RESUMEN

This study provides the first example of a strategy to design a practical ligand toward lysosomal acid α-glucosidase (GAA) focusing on N-alkyl derivatives of 1,4-dideoxy-1,4-imino-d-arabinitol (DAB). The optimized N-4'-(p-trifluoromethylphenyl)butyl-DAB (5g) showed a Ki value of 0.73 µM, which was 353-fold higher affinity than N-butyl-DAB (3f) without a terminal phenyl group. Docking analysis showed that the phenyl part of 5g was accommodated in a lipophilic pocket. Furthermore, the p-trifluoromethyl group effectively suppresses the fluctuation of the phenyl group, allowing it to produce a stable bonding form with GAA. 5g increased the midpoint of the protein's protein denaturation temperature (Tm) by 6.6 °C above that in the absence of the ligand and acted as a "thermodynamic stabilizer" to improve the thermal stability of rhGAA. 5g dose-dependently increased intracellular GAA activities in Pompe patient's fibroblasts with the M519V mutation; its effect was comparable to that of DNJ, which is under clinical trials.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo II , alfa-Glucosidasas , Humanos , alfa-Glucosidasas/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo II/tratamiento farmacológico , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/metabolismo , Ligandos , Lisosomas/metabolismo , Fibroblastos
4.
Pharmaceuticals (Basel) ; 15(12)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36559004

RESUMEN

To address the continued rise of multi-drug-resistant microorganisms, the development of novel drugs with new modes of action is urgently required. While humans biosynthesize the essential isoprenoid precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) via the established mevalonate pathway, pathogenic protozoa and certain pathogenic eubacteria use the less well-known methylerythritol phosphate pathway for this purpose. Important pathogens using the MEP pathway are, for example, Plasmodium falciparum, Mycobacterium tuberculosis, Pseudomonas aeruginosa and Escherichia coli. The enzymes of that pathway are targets for antiinfective drugs that are exempt from target-related toxicity. 2C-Methyl-D-erythritol 4-phosphate (MEP), the second enzyme of the non-mevalonate pathway, has been established as the molecular target of fosmidomycin, an antibiotic that has so far failed to be approved as an anti-infective drug. This review describes the development and anti-infective properties of a wide range of fosmidomycin derivatives synthesized over the last four decades. Here we discuss the DXR inhibitor pharmacophore, which comprises a metal-binding group, a phosphate or phosphonate moiety and a connecting linker. Furthermore, non-fosmidomycin-based DXRi, bisubstrate inhibitors and several prodrug concepts are described. A comprehensive structure-activity relationship (SAR) of nearly all inhibitor types is presented and some novel opportunities for further drug development of DXR inhibitors are discussed.

5.
Org Biomol Chem ; 20(36): 7250-7260, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-35838176

RESUMEN

L-ido-Deoxynojirimycin (L-ido-DNJ) itself showed no affinity for human lysosomal acid α-glucosidase (GAA), whereas 5-C-methyl-L-ido-DNJ showed a strong affinity for GAA, comparable to the glucose analog DNJ, with a Ki value of 0.060 µM. This excellent affinity for GAA and enzyme stabilization was observed only when methyl and ethyl groups were introduced. Docking simulation analysis revealed that the alkyl chains of 5-C-alkyl-L-ido-DNJs were stored in three different pockets, depending on their length, thereby the molecular orientation was changed. Comparison of the binding poses of DNJ and 5-C-methyl-L-ido-DNJ showed that they formed a common ionic interaction with Asp404, Asp518, and Asp616, but both the binding orientation and the distance between the ligand and each amino acid residue were different. 5-C-Methyl-L-ido-DNJ dose-dependently increased intracellular GAA activity in Pompe patient fibroblasts with the M519V mutation and also promoted enzyme transport to lysosomes. This study provides the first example of a strategy to design high-affinity ligands by introducing alkyl branches into rare sugars and L-sugar-type iminosugars to change the orientation of binding.


Asunto(s)
1-Desoxinojirimicina , Inhibidores de Glicósido Hidrolasas , Iminoazúcares , alfa-Glucosidasas , 1-Desoxinojirimicina/química , 1-Desoxinojirimicina/farmacología , Aminoácidos , Dominio Catalítico , Glucosa/análogos & derivados , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , Humanos , Iminoazúcares/química , Iminoazúcares/farmacología , Ligandos , Unión Proteica , alfa-Glucosidasas/química
6.
Chem Pharm Bull (Tokyo) ; 70(4): 261-268, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370202

RESUMEN

Habiterpenol is a G2 checkpoint inhibitor isolated from the culture broth of Phytohabitans sp. 3787_5. Here, we report the synthesis of new habiterpenol analogs through the total synthesis process of habiterpenol and evaluating the analogs for G2 checkpoint inhibitory activity. We investigated two different synthetic approaches for total synthesis, with intramolecular conjugate addition and Ti(III)-mediated radical cyclization as key reactions. Although the former was unsuccessful, the latter reaction facilitated stereoselective total synthesis and determination of the absolute configuration of habiterpenol. The extension of these chemistries to a structure-activity relationship (SAR) study gave new habiterpenol analogs, which could not be derived from natural habiterpenol and only be synthesized by applying the total synthesis. Therefore, this study provides important insights into SAR studies of habiterpenol.


Asunto(s)
Triterpenos , Ciclización , Estereoisomerismo , Relación Estructura-Actividad , Triterpenos/farmacología
7.
J Med Chem ; 65(3): 2329-2341, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35072486

RESUMEN

In recent years, the function of pharmacological chaperones as a "thermodynamic stabilizer" has been attracting attention in combination therapy. The coadministration of a pharmacological chaperone and recombinant human acid α-glucosidase (rhGAA) leads to improved stability and maturation by binding to the folded state of the rhGAA and thereby promotes enzyme delivery. This study provides the first example of a strategy to design a high-affinity ligand toward lysosomal acid α-glucosidase (GAA) focusing on alkyl branches on 1-deoxynojirimycin (DNJ); 5-C-heptyl-DNJ produced a nanomolar affinity for GAA with a Ki value of 0.0047 µM, which is 13-fold more potent than DNJ. The protein thermal shift assay revealed that 10 µM 5-C-heptyl-DNJ increased the midpoint of the protein denaturation temperature (Tm) to 73.6 °C from 58.6 °C in the absence of the ligand, significantly improving the thermal stability of rhGAA. Furthermore, 5-C-heptyl-DNJ dose dependency increased intracellular GAA activities in Pompe patient's fibroblasts with the M519V mutation. The introduction of C5 alkyl branches on DNJ provides a new molecular strategy for pharmacological chaperone therapy for Pompe disease, which may lead to the development of higher-affinity and practically useful chaperones.


Asunto(s)
1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/farmacología , Inhibidores Enzimáticos/farmacología , alfa-Glucosidasas/metabolismo , Alquilación , Inhibidores Enzimáticos/síntesis química , Fibroblastos/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo II , Humanos , Simulación de Dinámica Molecular , Estructura Molecular , Mutación , Conformación Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Proteínas Recombinantes/efectos de los fármacos , Proteínas Recombinantes/metabolismo , alfa-Glucosidasas/efectos de los fármacos , alfa-Glucosidasas/genética
8.
Environ Microbiol Rep ; 13(6): 822-829, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34632721

RESUMEN

Conidial pigment is an important virulence factor in Aspergillus fumigatus, a human fungal pathogen. The biosynthetic gene cluster for 1,8-dihydroxynaphthalene (DHN)-melanin in A. fumigatus consists of six genes, alb1, ayg1, arp1, arp2, abr1 and abr2. In contrast to black DHN-melanin fungi such as Magnaporthe grisea, the polyketide synthase Alb1p in A. fumigatus produces naphthopyrone YWA1 instead of 1,3,6,8-THN (T4HN) and YWA1 is converted to T4HN by Ayg1p. The yeast transformant expressing Alb1p and Arp1p dehydratase produced an unknown compound which was identified to be a novel angular naphthopyrone named YWA3 formed from YWA1. In addition, the amount of YWA3 produced was much more than that of YWA2 formed by non-enzymatic dehydration from YWA1. To further analyse the reaction in vitro, Arp1p was overexpressed in E. coli and purified. Kinetic analysis revealed Km value of Arp1p for YWA1 to be 41 µM which is comparable with that of Ayg1p for YWA1 in conversion to T4HN. The complex structure modelling well explained the mechanism of YWA3 generation by the dehydration of angular YWA1 by Arp1p. These results indicated the possibility that polymerization of angular naphthopyrone YWA3 but not YWA2 could be involved in the characteristic bluish-green conidial pigmentation of A. fumigatus.


Asunto(s)
Aspergillus fumigatus , Melaninas , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Hidroliasas , Cinética
9.
Sci Rep ; 11(1): 7929, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846449

RESUMEN

The emergence of drug-resistant bacteria has become a major problem worldwide. Bacterial dipeptidyl peptidases 7 and 11 (DPP7s and DPP11s), belonging to the family-S46 peptidases, are important enzymes for bacterial growth and are not present in mammals. Therefore, specific inhibitors for these peptidases are promising as potential antibiotics. While the molecular mechanisms underlining strict specificity at the S1 subsite of S46 peptidases have been well studied, those of relatively broad preference at the S2 subsite of these peptidases are unknown. In this study, we performed structural and biochemical analyses on DPP7 from Stenotrophomonas maltophilia (SmDPP7). SmDPP7 showed preference for the accommodation of hydrophobic amino acids at the S2 subsite in general, but as an exception, also for asparagine, a hydrophilic amino acid. Structural analyses of SmDPP7 revealed that this exceptional preference to asparagine is caused by a hydrogen bonding network at the bottom of the S2 subsite. The residues in the S2 subsite are well conserved among S46 peptidases as compared with those in the S1 subsite. We expect that our findings will contribute toward the development of a universal inhibitor of S46 peptidases.


Asunto(s)
Asparagina/química , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/química , Stenotrophomonas maltophilia/enzimología , Secuencia de Aminoácidos , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/antagonistas & inhibidores , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Especificidad por Sustrato , Termodinámica
10.
Sci Rep ; 9(1): 13587, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31537874

RESUMEN

Antimicrobial resistance is a global public threat and raises the need for development of new antibiotics with a novel mode of action. The dipeptidyl peptidase 11 from Porphyromonas gingivalis (PgDPP11) belongs to a new class of serine peptidases, family S46. Because S46 peptidases are not found in mammals, these enzymes are attractive targets for novel antibiotics. However, potent and selective inhibitors of these peptidases have not been developed to date. In this study, a high-resolution crystal structure analysis of PgDPP11 using a space-grown crystal enabled us to identify the binding of citrate ion, which could be regarded as a lead fragment mimicking the binding of a substrate peptide with acidic amino acids, in the S1 subsite. The citrate-based pharmacophore was utilized for in silico inhibitor screening. The screening resulted in an active compound SH-5, the first nonpeptidyl inhibitor of S46 peptidases. SH-5 and a lipophilic analog of SH-5 showed a dose-dependent inhibitory effect against the growth of P. gingivalis. The binding mode of SH-5 was confirmed by crystal structure analysis. Thus, these compounds could be lead structures for the development of selective inhibitors of PgDPP11.


Asunto(s)
Benzoatos/farmacología , Ácido Cítrico/metabolismo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/química , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Porphyromonas gingivalis/enzimología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Benzoatos/química , Sitios de Unión , Dominio Catalítico , Simulación por Computador , Cristalografía por Rayos X , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos , Fosfatos de Inositol , Modelos Moleculares , Conformación Proteica
11.
Biol Pharm Bull ; 42(5): 850-855, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31061331

RESUMEN

Acyl-CoA synthetase long-chain family members (ACSLs) are a family of enzymes that convert long-chain free fatty acids into their acyl-CoAs. ACSL4 is an ACSL isozyme with a strong preference for arachidonic acid (AA) and has been hypothesized to modulate the metabolic fates of AA. There are two ACSL4 splice variants: ACSL4V1, which is the more abundant transcript, and ACSL4V2, which is believed to be restricted to the brain. In the present study, we expressed recombinant human ACSL4V1 and V2 in Spodoptera frugiperda 9 (Sf9) cells using the baculovirus expression system and then partially purified both variants by cobalt affinity column chromatography. We then established a novel ACSL assay system with LC-MS/MS, which is highly sensitive and applicable to various kinds of fatty acids, and used it to investigate the substrate specificity of recombinant human ACSL4V1 and V2. The results showed that both ACSL4 variants preferred various kinds of highly unsaturated fatty acids (HUFAs), including docosahexaenoic acid (DHA), adrenic acid (docosatetraenoic acid) and eicosapentaenoic acid (EPA), as well as AA as a substrate. Moreover, our kinetic studies revealed that the two variants had similar relative affinities for AA, EPA and DHA but different reaction rates for each HUFA. These results confirmed the importance of both of ACSL4 variants in the maintenance of membrane phospholipids bearing HUFAs. Structural analysis of these variants might reveal the molecular mechanism by which they maintain membrane phospholipids bearing HUFAs.


Asunto(s)
Coenzima A Ligasas/metabolismo , Ácidos Grasos Insaturados/metabolismo , Animales , Baculoviridae/genética , Línea Celular , Cromatografía Liquida , Coenzima A Ligasas/genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Spodoptera , Especificidad por Sustrato , Espectrometría de Masas en Tándem
12.
Sci Rep ; 8(1): 2714, 2018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29426867

RESUMEN

Dipeptidyl peptidase IV (DPP IV, DPP4, or DAP IV) preferentially cleaves substrate peptides with Pro or Ala at the P1 position. The substrate recognition mechanism has been fully elucidated for mammalian DPP IV by crystal structure analyses but not for bacterial orthologues. Here, we report the crystal structures of a bacterial DPP IV (PmDAP IV) in its free form and in complexes with two kinds of dipeptides as well as with a non-peptidyl inhibitor at 1.90 to 2.47 Å resolution. Acyl-enzyme intermediates were observed for the dipeptide complexes of PmDAP IV, whereas tetrahedral intermediates were reported for the oligopeptide complexes of mammalian DPP IVs. This variation reflects the different structural environments of the active site Arg residues, which are involved in the recognition of a substrate carbonyl group, of mammalian and bacterial enzymes. A phylogenetic analysis revealed that PmDAP IV is a closer relative of dipeptidyl peptidases 8 and 9 (DPP8 and DPP9, DPP IV-family enzymes) than DPP IV. These results provide new insights into the substrate recognition mechanism of bacterial DAP IVs and may assist in the development of selective inhibitors for DAP IVs from pathogenic asaccharolytic bacteria, which utilise proteins or peptides as an energy source.


Asunto(s)
Dipéptidos/metabolismo , Dipeptidil Peptidasa 4/química , Dipeptidil Peptidasa 4/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/metabolismo , Xanthomonadaceae/enzimología , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Dipeptidil Peptidasa 4/genética , Humanos , Estructura Molecular , Mutagénesis Sitio-Dirigida , Mutación , Conformación Proteica , Dominios Proteicos , Homología de Secuencia , Especificidad por Sustrato
13.
Acta Crystallogr F Struct Biol Commun ; 73(Pt 11): 601-606, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29095153

RESUMEN

Dipeptidyl aminopeptidase IV (DAP IV or DPP IV) from Pseudoxanthomonas mexicana WO24 (PmDAP IV) preferentially cleaves substrate peptides with Pro or Ala at the P1 position [NH2-P2-P1(Pro/Ala)-P1'-P2'…]. For crystallographic studies, the periplasmic form of PmDAP IV was overproduced in Escherichia coli, purified and crystallized in complex with the tripeptide Lys-Pro-Tyr using the hanging-drop vapour-diffusion method. Kinetic parameters of the purified enzyme against a synthetic substrate were also determined. X-ray diffraction data to 1.90 Šresolution were collected from a triclinic crystal form belonging to space group P1, with unit-cell parameters a = 88.66, b = 104.49, c = 112.84 Å, α = 67.42, ß = 68.83, γ = 65.46°. Initial phases were determined by the molecular-replacement method using Stenotrophomonas maltophilia DPP IV (PDB entry 2ecf) as a template and refinement of the structure is in progress.


Asunto(s)
Dipeptidil Peptidasa 4/química , Dipeptidil Peptidasa 4/aislamiento & purificación , Periplasma/enzimología , Xanthomonadaceae/enzimología , Cristalización , Cristalografía por Rayos X , Dipeptidil Peptidasa 4/metabolismo , Cinética , Conformación Proteica , Xanthomonadaceae/clasificación
14.
Sci Rep ; 5: 16641, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26573329

RESUMEN

S-adenosyl-L-homocysteine hydrolase (SAH hydrolase or SAHH) is a highly conserved enzyme that catalyses the reversible hydrolysis of SAH to L-homocysteine (HCY) and adenosine (ADO). High-resolution crystal structures have been reported for bacterial and plant SAHHs, but not mammalian SAHHs. Here, we report the first high-resolution crystal structure of mammalian SAHH (mouse SAHH) in complex with a reaction product (ADO) and with two reaction intermediate analogues-3'-keto-aristeromycin (3KA) and noraristeromycin (NRN)-at resolutions of 1.55, 1.55, and 1.65 Å. Each of the three structures constitutes a structural snapshot of one of the last three steps of the five-step process of SAH hydrolysis by SAHH. In the NRN complex, a water molecule, which is an essential substrate for ADO formation, is structurally identified for the first time as the candidate donor in a Michael addition by SAHH to the 3'-keto-4',5'-didehydroadenosine reaction intermediate. The presence of the water molecule is consistent with the reaction mechanism proposed by Palmer &Abeles in 1979. These results provide insights into the reaction mechanism of the SAHH enzyme.


Asunto(s)
Adenosilhomocisteinasa/química , Adenosilhomocisteinasa/metabolismo , Adenosina/análogos & derivados , Adenosina/química , Adenosina/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Biocatálisis , Cristalografía por Rayos X , Hidrólisis , Ratones , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , S-Adenosilhomocisteína/metabolismo , Alineación de Secuencia , Especificidad por Sustrato
15.
Sci Rep ; 5: 11151, 2015 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-26057589

RESUMEN

The dipeptidyl peptidase 11 from Porphyromonas gingivalis (PgDPP11) belongs to the S46 family of serine peptidases and preferentially cleaves substrates with Asp/Glu at the P1 position. The molecular mechanism underlying the substrate specificity of PgDPP11, however, is unknown. Here, we report the crystal structure of PgDPP11. The enzyme contains a catalytic domain with a typical double ß-barrel fold and a recently identified regulatory α-helical domain. Crystal structure analyses, docking studies, and biochemical studies revealed that the side chain of Arg673 in the S1 subsite is essential for recognition of the Asp/Glu side chain at the P1 position of the bound substrate. Because S46 peptidases are not found in mammals and the Arg673 is conserved among DPP11s, we anticipate that DPP11s could be utilised as targets for antibiotics. In addition, the present structure analyses could be useful templates for the design of specific inhibitors of DPP11s from pathogenic organisms.


Asunto(s)
Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Mutación , Porphyromonas gingivalis/enzimología , Secuencia de Aminoácidos , Cristalografía por Rayos X , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/química , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
16.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 2): 206-10, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25664797

RESUMEN

Dipeptidyl peptidase 11 from Porphyromonas gingivalis (PgDPP11) preferentially cleaves substrate peptides with Asp and Glu at the P1 position [NH2-P2-P1(Asp/Glu)-P1'-P2'...]. For crystallographic studies, PgDPP11 was overproduced in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. X-ray diffraction data to 1.82 Å resolution were collected from an orthorhombic crystal form belonging to space group C2221, with unit-cell parameters a = 99.33, b = 103.60, c = 177.33 Å. Structural analysis by the multi-wavelength anomalous diffraction method is in progress.


Asunto(s)
Proteínas Bacterianas/química , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/química , Porphyromonas gingivalis/enzimología , Proteínas Bacterianas/aislamiento & purificación , Cristalización , Cristalografía por Rayos X , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/aislamiento & purificación
17.
Biotechnol Biofuels ; 8: 230, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26719764

RESUMEN

BACKGROUND: The filamentous fungus Trichoderma reesei (anamorph of Hypocrea jecorina) produces increased cellulase expression when grown on cellulose or its derivatives as a sole carbon source. It has been believed that ß-glucosidases of T. reesei not only metabolize cellobiose but also contribute in the production of inducers of cellulase gene expression by their transglycosylation activity. The cellulase hyper-producing mutant PC-3-7 developed in Japan has enhanced cellulase production ability when cellobiose is used as the inducer. The comparative genomics analysis of PC-3-7 and its parent revealed a single-nucleotide mutation within the bgl2 gene encoding intracellular ß-glucosidase II (BGLII/Cel1a), giving rise to an amino acid substitution in PC-3-7, which could potentially account for the enhanced cellulase expression when these strains are cultivated on cellulose and cellobiose. RESULTS: To analyze the effects of the BGLII mutation in cellulase induction, we constructed both a bgl2 revertant and a disruptant. Enzymatic analysis of the transformant lysates showed that the strain expressing mutant BGLII exhibited weakened cellobiose hydrolytic activity, but produced some transglycosylation products, suggesting that the SNP in bgl2 strongly diminished cellobiase activity, but did not result in complete loss of function of BGLII. The analysis of the recombinant BGLII revealed that transglycosylation products might be oligosaccharides, composed probably of glucose linked ß-1,4, ß-1,3, or a mixture of both. PC-3-7 revertants of bgl2 exhibited reduced expression and inducibility of cellulase during growth on cellulose and cellobiose substrates. Furthermore, the effect of this bgl2 mutation was reproduced in the common strain QM9414 in which the transformants showed cellulase production comparable to that of PC-3-7. CONCLUSION: We conclude that BGLII plays an important role in cellulase induction in T. reesei and that the bgl2 mutation in PC-3-7 brought about enhanced cellulase expression on cellobiose. The results of the investigation using PC-3-7 suggested that other mutation(s) in PC-3-7 could also contribute to cellulase induction. Further investigation is essential to unravel the mechanism responsible for cellulase induction in T. reesei.

18.
J Med Chem ; 57(21): 8827-38, 2014 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-25254502

RESUMEN

1-Deoxy-d-xylulose 5-phosphate reductoisomerase of Plasmodium falciparum (PfIspC, PfDxr), believed to be the rate-limiting enzyme of the nonmevalonate pathway of isoprenoid biosynthesis (MEP pathway), is a clinically validated antimalarial target. The enzyme is efficiently inhibited by the natural product fosmidomycin. To gain new insights into the structure activity relationships of reverse fosmidomycin analogs, several reverse analogs of fosmidomycin were synthesized and biologically evaluated. The 4-methoxyphenyl substituted derivative 2c showed potent inhibition of PfIspC as well as of P. falciparum growth and was more than one order of magnitude more active than fosmidomycin. The binding modes of three new derivatives in complex with PfIspC, reduced nicotinamide adenine dinucleotide phosphate, and Mg(2+) were determined by X-ray structure analysis. Notably, PfIspC selectively binds the S-enantiomers of the study compounds.


Asunto(s)
Isomerasas Aldosa-Cetosa/antagonistas & inhibidores , Fosfomicina/análogos & derivados , Isomerasas Aldosa-Cetosa/metabolismo , Dominio Catalítico , Cristalización , Fosfomicina/síntesis química , Fosfomicina/farmacología , NADP/metabolismo , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Relación Estructura-Actividad
19.
Sci Rep ; 4: 4977, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24827749

RESUMEN

The dipeptidyl aminopeptidase BII (DAP BII) belongs to a serine peptidase family, S46. The amino acid sequence of the catalytic unit of DAP BII exhibits significant similarity to those of clan PA endopeptidases, such as chymotrypsin. However, the molecular mechanism of the exopeptidase activity of family S46 peptidase is unknown. Here, we report crystal structures of DAP BII. DAP BII contains a peptidase domain including a typical double ß-barrel fold and previously unreported α-helical domain. The structures of peptide complexes revealed that the α-helical domain covers the active-site cleft and the side chain of Asn330 in the domain forms hydrogen bonds with the N-terminus of the bound peptide. These observations indicate that the α-helical domain regulates the exopeptidase activity of DAP BII. Because S46 peptidases are not found in mammals, we expect that our study will be useful for the design of specific inhibitors of S46 peptidases from pathogens.


Asunto(s)
Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/química , Exopeptidasas/química , Secuencia de Aminoácidos , Catálisis , Dominio Catalítico , Cristalografía por Rayos X/métodos , Enlace de Hidrógeno , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Especificidad por Sustrato
20.
Sci Rep ; 4: 4292, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24598890

RESUMEN

The exopeptidases of family S46 are exceptional, as the closest homologs of these enzymes are the endopeptidases of clan PA. The three-dimensional structure of S46 enzymes is unknown and only one of the catalytic residues, the serine, has been identified. The catalytic histidine and aspartate residues are not experimentally identified. Here we present phylogenetic and experimental data that identify all residues of the catalytic triad of S46 peptidase, dipeptidyl aminopeptidase BII (DAP BII) from Pseudoxanthomonas mexicana WO24. Phylogenetic comparison with the protein and S46 peptidases, revealed His-86, Ser-657, and five aspartate residues as possible catalytic residues. Mutation studies identified the catalytic triad of DAP BII as His-86, Asp-224, and Ser-657, while secondary structure analysis predicted an extended alpha-helical domain in between Asp-224 and Ser-657. This domain is unique for family S46 exopeptidases and its absence from the endopeptidases of clan PA might be key to their different hydrolysis activities.


Asunto(s)
Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/química , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Gammaproteobacteria/enzimología , Secuencia de Aminoácidos , Catálisis , Clonación Molecular , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Gammaproteobacteria/clasificación , Gammaproteobacteria/genética , Expresión Génica , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Estructura Secundaria de Proteína , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...