Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Soc Trans ; 35(Pt 5): 1055-9, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17956278

RESUMEN

K(ATP) channels (ATP-sensitive potassium channels), comprising four subunits each of Kir6.2 (inwardly rectifying potassium channel 6.2) and the SUR1 (sulfonylurea receptor 1), play a central role in glucose-stimulated insulin secretion by the pancreatic beta-cell. Changes in the number of channels at the cell surface are associated with genetic diseases of aberrant insulin secretion, including CHI (congenital hyperinsulinism) and NDM (neonatal diabetes mellitus). The present review summarizes advances in our understanding of the vesicular trafficking of normal K(ATP) channels and how genetic mutations in Kir6.2 interfere with such trafficking. A mutation, E282K, causing CHI, was found to disrupt a DXE [di-acidic ER (endoplasmic reticulum)-exit signal], thereby preventing its assembly into COPII (coatamer protein II)-coated vesicles and subsequent ER exit. The resultant decrease in the cell-surface density of the channel could explain the disease phenotype. Two mutations, Y330C and F333I, reported in patients with NDM, disrupted an endocytic traffic signal, thereby impairing CCV (clathrin-coated vesicle) formation and endocytosis. The consequent increase in the density of K(ATP) channels, together with an attenuated sensitivity to ATP reported previously, may account for the severe form of NDM.


Asunto(s)
Adenosina Trifosfato/metabolismo , Canales de Potasio/metabolismo , Diabetes Mellitus/metabolismo , Enfermedad , Endocitosis , Humanos , Recién Nacido , Enfermedades del Recién Nacido/metabolismo , Modelos Moleculares , Mutación , Canales de Potasio/biosíntesis , Canales de Potasio/genética , Transporte de Proteínas
2.
Proc Natl Acad Sci U S A ; 96(9): 4838-43, 1999 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-10220380

RESUMEN

Cellular imbalance in the levels of antioxidants and reactive oxygen species resulting in apoptosis is directly associated with a number of parasitic infections, aging, and several genetic and multifactorial diseases. The baculovirus AcNPV-encoded antiapoptotic p35 gene prevents apoptosis induced by a variety of apoptotic agents in different systems. We demonstrate the ability of the p35 gene to inhibit oxidative stress-induced apoptosis. In vitro cultured Spodoptera frugiperda (Sf9) insect cells infected with wild-type AcNPV carrying the antiapoptotic p35 gene did not undergo apoptosis when subjected to oxidative stress generated by the exogenous application of oxidants or in vivo generation of reactive oxygen species or on direct exposure of cells to UV radiations. An AcNPV mutant carrying a deletion of the p35 gene failed to arrest cell death. Transfection of cells with a recombinant plasmid containing the p35 gene under the transcriptional control of a stress promoter (Drosophila hsp70) was also able to rescue cells from oxidative stress-induced cell death, demonstrating the direct involvement of P35. ESR spin-trapping studies conducted in vitro and in vivo demonstrated that P35 functions directly as an antioxidant by mopping out free radicals and consequently prevents cell death by acting at an upstream step in the reactive oxygen species-mediated cell death pathway.


Asunto(s)
Apoptosis/genética , Regulación Viral de la Expresión Génica , Estrés Oxidativo/genética , Proteínas Virales/genética , Animales , Antioxidantes/metabolismo , Línea Celular , Proteínas Inhibidoras de la Apoptosis , Insectos , Regiones Promotoras Genéticas , Especies Reactivas de Oxígeno/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA