Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Trends Microbiol ; 32(4): 355-364, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37891023

RESUMEN

Neisseria gonorrhoeae is a human-specific pathogen responsible for the sexually transmitted infection, gonorrhoea. N. gonorrhoeae promotes its survival by manipulating both innate and adaptive immune responses. The most abundant gonococcal outer-membrane protein is PorB, an essential porin that facilitates ion exchange. Importantly, gonococcal PorB has several immunomodulatory properties. To subvert the innate immune response, PorB suppresses killing mechanisms of macrophages and neutrophils, and recruits negative regulators of complement to the gonococcal cell surface. For manipulation of adaptive immune responses, gonococcal PorB suppresses the capability of dendritic cells to stimulate proliferation of T cells. As gonococcal PorB is highly abundant in outer-membrane vesicles, consideration of the immunomodulatory properties of this porin is critical when designing gonococcal vaccines.


Asunto(s)
Gonorrea , Humanos , Neisseria gonorrhoeae , Porinas/metabolismo , Membrana Celular/metabolismo , Inmunidad
2.
mSphere ; 8(6): e0044123, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37850911

RESUMEN

IMPORTANCE: Horizontal gene transfer (HGT) is a major influence in driving the spread of antimicrobial resistance (AMR) in many bacteria. A conjugative plasmid which is widespread in Neisseria gonorrhoeae, pConj, prevented the use of tetracycline/doxycycline for treating gonococcal infection. Here, we show that pConj evolved in the related pathogen, Neisseria meningitidis, and has been acquired by the gonococcus from the meningococcus on multiple occasions. Following its initial acquisition, pConj spread to different gonococcal lineages; changes in the plasmid's conjugation machinery associated with another transfer event limit spread in the gonococcal populations. Our findings have important implications for the use of doxycycline to prevent bacterial sexually transmitted disease which is likely to exacerbate the spread of AMR through HGT in pathogenic bacteria.


Asunto(s)
Gonorrea , Neisseria meningitidis , Humanos , Neisseria/genética , Doxiciclina , Pruebas de Sensibilidad Microbiana , Plásmidos/genética , Gonorrea/microbiología , Neisseria gonorrhoeae/genética , Neisseria meningitidis/genética
3.
Microb Genom ; 9(7)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37436798

RESUMEN

Neisseria gonorrhoeae is a significant threat to global health with an estimated incidence of over 80 million cases each year and high levels of antimicrobial resistance. The gonococcal ß-lactamase plasmid, pbla, carries the TEM ß-lactamase, which requires only one or two amino acid changes to become an extended-spectrum ß-lactamase (ESBL); this would render last resort treatments for gonorrhoea ineffective. Although pbla is not mobile, it can be transferred by the conjugative plasmid, pConj, found in N. gonorrhoeae. Seven variants of pbla have been described previously, but little is known about their frequency or distribution in the gonococcal population. We characterised sequences of pbla variants and devised a typing scheme, Ng_pblaST that allows their identification from whole genome short-read sequences. We implemented Ng_pblaST to assess the distribution of pbla variants in 15 532 gonococcal isolates. This demonstrated that only three pbla variants commonly circulate in gonococci, which together account for >99 % of sequences. The pbla variants carry different TEM alleles and are prevalent in distinct gonococcal lineages. Analysis of 2758 pbla-containing isolates revealed the co-occurrence of pbla with certain pConj types, indicating co-operativity between pbla and pConj variants in the spread of plasmid-mediated AMR in N. gonorrhoeae. Understanding the variation and distribution of pbla is essential for monitoring and predicting the spread of plasmid-mediated ß-lactam resistance in N. gonorrhoeae.


Asunto(s)
Gonorrea , Neisseria gonorrhoeae , Humanos , Neisseria gonorrhoeae/genética , beta-Lactamasas/genética , Alelos , Pruebas de Sensibilidad Microbiana , Plásmidos/genética , Gonorrea/genética
4.
PLoS Genet ; 19(5): e1010743, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37186602

RESUMEN

Plasmids are diverse extrachromosomal elements significantly that contribute to interspecies dissemination of antimicrobial resistance (AMR) genes. However, within clinically important bacteria, plasmids can exhibit unexpected narrow host ranges, a phenomenon that has scarcely been examined. Here we show that pConj is largely restricted to the human-specific pathogen, Neisseria gonorrhoeae. pConj can confer tetracycline resistance and is central to the dissemination of other AMR plasmids. We tracked pConj evolution from the pre-antibiotic era 80 years ago to the modern day and demonstrate that, aside from limited gene acquisition and loss events, pConj is remarkably conserved. Notably, pConj has remained prevalent in gonococcal populations despite cessation of tetracycline use, thereby demonstrating pConj adaptation to its host. Equally, pConj imposes no measurable fitness costs and is stably inherited by the gonococcus. Its maintenance depends on the co-operative activity of plasmid-encoded Toxin:Antitoxin (TA) and partitioning systems rather than host factors. An orphan VapD toxin encoded on pConj forms a split TA with antitoxins expressed from an ancestral co-resident plasmid or a horizontally-acquired chromosomal island, potentially explaining pConj's limited distribution. Finally, ciprofloxacin can induce loss of this highly stable plasmid, reflecting epidemiological evidence of transient reduction in pConj prevalence when fluoroquinolones were introduced to treat gonorrhoea.


Asunto(s)
Gonorrea , Humanos , Gonorrea/tratamiento farmacológico , Gonorrea/genética , Gonorrea/epidemiología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Plásmidos/genética , Neisseria gonorrhoeae/genética , Farmacorresistencia Bacteriana/genética
5.
Trends Microbiol ; 31(8): 805-815, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36941192

RESUMEN

Neisseria meningitidis is a human-adapted pathogen that causes meningitis and sepsis worldwide. N. meningitidis factor H-binding protein (fHbp) provides a mechanism for immune evasion by binding human complement factor H (CFH) to protect it from complement-mediated killing. Here, we discuss features of fHbp which enable it to engage human CFH (hCFH), and the regulation of fHbp expression. Studies of host susceptibility and bacterial genome-wide association studies (GWAS) highlight the importance of the interaction between fHbp and CFH and other complement factors, such as CFHR3, on the development of invasive meningococcal disease (IMD). Understanding the basis of fHbp:CFH interactions has also informed the design of next-generation vaccines as fHbp is a protective antigen. Structure-informed refinement of fHbp vaccines will help to combat the threat posed by the meningococcus, and accelerate the elimination of IMD.


Asunto(s)
Infecciones Meningocócicas , Vacunas Meningococicas , Neisseria meningitidis , Humanos , Factor H de Complemento/genética , Factor H de Complemento/metabolismo , Proteínas Bacterianas/metabolismo , Antígenos Bacterianos/metabolismo , Virulencia , Proteínas Portadoras , Estudio de Asociación del Genoma Completo , Susceptibilidad a Enfermedades , Neisseria meningitidis/genética , Infecciones Meningocócicas/prevención & control , Infecciones Meningocócicas/microbiología , Vacunas Meningococicas/genética , Vacunas Bacterianas
6.
Infect Immun ; 90(10): e0037722, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36194022

RESUMEN

Neisseria meningitidis and Neisseria gonorrhoeae are important human pathogens that have evolved to bind the major negative regulator of the complement system, complement factor H (CFH). However, little is known about the interaction of pathogens with CFH-related proteins (CFHRs) which are structurally similar to CFH but lack the main complement regulatory domains found in CFH. Insights into the role of CFHRs have been hampered by a lack of specific reagents. We generated a panel of CFHR-specific monoclonal antibodies and demonstrated that CFHR5 was bound by both pathogenic Neisseria spp. We showed that CFHR5 bound to PorB expressed by both pathogens in the presence of sialylated lipopolysaccharide and enhanced complement activation on the surface of N. gonorrhoeae. Our study furthered our understanding of the interactions of CFHRs with bacterial pathogens and revealed that CFHR5 bound the meningococcus and gonococcus via similar mechanisms.


Asunto(s)
Neisseria meningitidis , Porinas , Humanos , Porinas/metabolismo , Factor H de Complemento/metabolismo , Neisseria , Lipopolisacáridos/metabolismo , Neisseria gonorrhoeae , Anticuerpos Monoclonales/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo
7.
Front Cell Infect Microbiol ; 12: 913292, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35811666

RESUMEN

Neisseria meningitidis and Neisseria gonorrhoeae are two obligate human pathogens that have evolved to be uniquely adapted to their host. The meningococcus is frequently carried asymptomatically in the nasopharynx, while gonococcal infection of the urogenital tract usually elicits a marked local inflammatory response. Other members of the Neisseria genus are abundant in the upper airway where they could engage in co-operative or competitive interactions with both these pathogens. Here, we briefly outline the potential sites of contact between Neisseria spp. in the body, with emphasis on the upper airway, and describe the growing yet circumstantial evidence for antagonism from carriage studies and human volunteer challenge models with Neisseria lactamica. Recent laboratory studies have characterized antagonistic mechanisms that enable competition between Neisseria species. Several of these mechanisms, including Multiple Adhesin family (Mafs), Two Partner Secretion Systems, and Type VI secretion system, involve direct contact between bacteria; the genetic organisation of these systems, and the domain structure of their effector molecules have striking similarities. Additionally, DNA from one species of Neisseria can be toxic to another species, following uptake. More research is needed to define the full repertoire of antagonistic mechanisms in Neisseria spp., their distribution in strains, their range of activity, and contribution to survival in vivo. Understanding the targets of effectors could reveal how antagonistic relationships between close relatives shape subsequent interactions between pathogens and their hosts.


Asunto(s)
Neisseria meningitidis , Neisseria , Conflicto de Intereses , Humanos , Nasofaringe/microbiología , Neisseria/genética , Neisseria gonorrhoeae/genética , Neisseria meningitidis/genética
8.
Microb Genom ; 8(6)2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35759406

RESUMEN

Shigella flexneri is a major health burden in low- and middle-income countries, where it is a leading cause of mortality associated with diarrhoea in children, and shows an increasing incidence among travellers and men having sex with men. Like all Shigella spp., S. flexneri has evolved from commensal Escherichia coli following the acquisition of a large plasmid pINV, which contains genes essential for virulence. Current sequence typing schemes of Shigella are based on combinations of chromosomal genetic loci, since pINV-encoded virulence genes are often lost during growth in the laboratory, making these elements inappropriate for sequence typing. By performing comparative analysis of pINVs from S. flexneri strains isolated from different geographical regions and belonging to different serotypes, we found that in contrast to plasmid-encoded virulence genes, plasmid maintenance genes are highly stable pINV-encoded elements. For the first time, to our knowledge, we have developed a S. flexneri plasmid multilocus sequence typing (pMLST) method based on different combinations of alleles of the vapBC and yacAB toxin-antitoxin (TA) systems, and the parAB partitioning system. This enables typing of S. flexneri pINV plasmids into distinct 'virulence sequence types' (vSTs). Furthermore, the phylogenies of vST alleles and bacterial host core genomes suggests an intimate co-evolution of pINV with the chromosome of its bacterial host, consistent with previous findings. This work demonstrates the potential of plasmid maintenance loci as genetic characteristics to study as well as to trace the molecular phylogenesis of S. flexneri pINV and the phylogenetic relationship of this plasmid with its bacterial host.


Asunto(s)
Shigella flexneri , Shigella , Niño , Escherichia coli/genética , Humanos , Filogenia , Plásmidos/genética , Shigella/genética , Shigella flexneri/genética , Virulencia/genética
9.
Microbiology (Reading) ; 168(6)2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35763318

RESUMEN

Neisseria gonorrhoeae, the gonococcus, is a pathogen of major public health concern, but sophisticated approaches to gene manipulation are limited for this species. For example, there are few methods for generating markerless mutations, which allow the generation of precise point mutations and deletions without introducing additional DNA sequence. Markerless mutations are central to studying pathogenesis, the spread of antimicrobial resistance (AMR) and for vaccine development. Here we describe the use of galK as a counter-selectable marker that can be used for markerless mutagenesis in N. gonorrhoeae. galK encodes galactokinase, an enzyme that metabolizes galactose in bacteria that can utilize it as a sole carbon source. GalK can also phosphorylate a galactose analogue, 2-deoxy-galactose (2-DOG), into a toxic, non-metabolisable intermediate, 2-deoxy-galactose-1-phosphate. We utilized this property of GalK to develop a markerless approach for mutagenesis in N. gonorrhoeae. We successfully deleted both chromosomally and plasmid-encoded genes, that are important for gonococcal vaccine development and studies of AMR spread. We designed a positive-negative selection cassette, based on an antibiotic resistance marker and galK, that efficiently rendered N. gonorrhoeae susceptible to growth on 2-DOG. We then adapted the galK-based counter-selection and the use of 2-DOG for markerless mutagenesis, and applied biochemical and phenotypic analyses to confirm the absence of target genes. We show that our markerless mutagenesis method for N. gonorrhoeae has a high success rate, and should be a valuable gene editing tool in the future.


Asunto(s)
Edición Génica , Neisseria gonorrhoeae , Galactosa/metabolismo , Mutagénesis , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo , Plásmidos/genética
10.
J Bacteriol ; 204(3): e0051921, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34978459

RESUMEN

Shigella sonnei is a major cause of bacillary dysentery and an increasing concern due to the spread of multidrug resistance. S. sonnei harbors pINV, an ∼210 kb plasmid that encodes a type III secretion system (T3SS), which is essential for virulence. During growth in the laboratory, avirulence arises spontaneously in S. sonnei at high frequency, hampering studies on and vaccine development against this important pathogen. Here, we investigated the molecular basis for the emergence of avirulence in S. sonnei and showed that avirulence mainly results from pINV loss, which is consistent with previous findings. Ancestral deletions have led to the loss from S. sonnei pINV of two toxin-antitoxin (TA) systems involved in plasmid maintenance, CcdAB and GmvAT, which are found on pINV in Shigella flexneri. We showed that the introduction of these TA systems into S. sonnei pINV reduced but did not eliminate pINV loss, while the single amino acid polymorphisms found in the S. sonnei VapBC TA system compared with S. flexneri VapBC also contributed to pINV loss. Avirulence also resulted from deletions of T3SS-associated genes in pINV through recombination between insertion sequences (ISs) on the plasmid. These events differed from those observed in S. flexneri due to the different distribution and repertoire of ISs. Our findings demonstrated that TA systems and ISs influenced plasmid dynamics and loss in S. sonnei and could be exploited for the design and evaluation of vaccines. IMPORTANCE Shigella sonnei is the major cause of shigellosis in high-income and industrializing countries and is an emerging, multidrug-resistant pathogen. A significant challenge when studying this bacterium is that it spontaneously becomes avirulent during growth in the laboratory through loss of its virulence plasmid (pINV). Here, we deciphered the mechanisms leading to avirulence in S. sonnei and how the limited repertoire and amino acid sequences of plasmid-encoded toxin-antitoxin (TA) systems make the maintenance of pINV in this bacterium less efficient compared with Shigella flexneri. Our findings highlighted how subtle differences in plasmids in closely related species have marked effects and could be exploited to reduce plasmid loss in S. sonnei. This should facilitate research on this bacterium and vaccine development.


Asunto(s)
Antitoxinas , Disentería Bacilar , Sistemas Toxina-Antitoxina , Secuencia de Aminoácidos , Antitoxinas/genética , Elementos Transponibles de ADN , Disentería Bacilar/microbiología , Disentería Bacilar/prevención & control , Humanos , Plásmidos/genética , Shigella flexneri/genética , Shigella sonnei/genética , Sistemas Toxina-Antitoxina/genética , Virulencia/genética
11.
Mil Med Res ; 9(1): 3, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35012680

RESUMEN

Bacteria can evolve rapidly by acquiring new traits such as virulence, metabolic properties, and most importantly, antimicrobial resistance, through horizontal gene transfer (HGT). Multidrug resistance in bacteria, especially in Gram-negative organisms, has become a global public health threat often through the spread of mobile genetic elements. Conjugation represents a major form of HGT and involves the transfer of DNA from a donor bacterium to a recipient by direct contact. Conjugative plasmids, a major vehicle for the dissemination of antimicrobial resistance, are selfish elements capable of mediating their own transmission through conjugation. To spread to and survive in a new bacterial host, conjugative plasmids have evolved mechanisms to circumvent both host defense systems and compete with co-resident plasmids. Such mechanisms have mostly been studied in model plasmids such as the F plasmid, rather than in conjugative plasmids that confer antimicrobial resistance (AMR) in important human pathogens. A better understanding of these mechanisms is crucial for predicting the flow of antimicrobial resistance-conferring conjugative plasmids among bacterial populations and guiding the rational design of strategies to halt the spread of antimicrobial resistance. Here, we review mechanisms employed by conjugative plasmids that promote their transmission and establishment in Gram-negative bacteria, by following the life cycle of conjugative plasmids.


Asunto(s)
Antibacterianos , Conjugación Genética , Antibacterianos/farmacología , Conjugación Genética/genética , Farmacorresistencia Bacteriana/genética , Transferencia de Gen Horizontal/genética , Humanos , Plásmidos/genética
12.
PLoS Pathog ; 17(10): e1009992, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34662348

RESUMEN

Many invasive bacterial diseases are caused by organisms that are ordinarily harmless components of the human microbiome. Effective interventions against these microbes require an understanding of the processes whereby symbiotic or commensal relationships transition into pathology. Here, we describe bacterial genome-wide association studies (GWAS) of Neisseria meningitidis, a common commensal of the human respiratory tract that is nevertheless a leading cause of meningitis and sepsis. An initial GWAS discovered bacterial genetic variants, including single nucleotide polymorphisms (SNPs), associated with invasive meningococcal disease (IMD) versus carriage in several loci across the meningococcal genome, encoding antigens and other extracellular components, confirming the polygenic nature of the invasive phenotype. In particular, there was a significant peak of association around the fHbp locus, encoding factor H binding protein (fHbp), which promotes bacterial immune evasion of human complement by recruiting complement factor H (CFH) to the meningococcal surface. The association around fHbp with IMD was confirmed by a validation GWAS, and we found that the SNPs identified in the validation affected the 5' region of fHbp mRNA, altering secondary RNA structures, thereby increasing fHbp expression and enhancing bacterial escape from complement-mediated killing. This finding is consistent with the known link between complement deficiencies and CFH variation with human susceptibility to IMD. These observations demonstrate the importance of human and bacterial genetic variation across the fHbp:CFH interface in determining IMD susceptibility, the transition from carriage to disease.


Asunto(s)
Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Infecciones Meningocócicas/genética , Neisseria meningitidis/genética , Neisseria meningitidis/patogenicidad , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple
13.
Pathogens ; 10(9)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34578112

RESUMEN

Shigella is a leading cause of bacillary dysentery worldwide, responsible for high death rates especially among children under five in low-middle income countries. Shigella sonnei prevails in high-income countries and is becoming prevalent in industrializing countries, where multi-drug resistant strains have emerged, as a significant public health concern. One strategy to combat drug resistance in S. sonnei is the development of effective vaccines. There is no licensed vaccine against Shigella, and development has been hindered by the lack of an effective small-animal model. In this work, we used human enteroids, for the first time, as a model system to evaluate a plasmid-stabilized S. sonnei live attenuated vaccine strain, CVD 1233-SP, and a multivalent derivative, CVD 1233-SP::CS2-CS3, which expresses antigens from enterotoxigenic Escherichia coli. The strains were also tested for immunogenicity and protective capacity in the guinea pig model, demonstrating their ability to elicit serum and mucosal antibody responses as well as protection against challenge with wild-type S. sonnei. These promising results highlight the utility of enteroids as an innovative preclinical model to evaluate Shigella vaccine candidates, constituting a significant advance for the development of preventative strategies against this important human pathogen.

14.
mBio ; 12(5): e0209921, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34544273

RESUMEN

The two-component system PhoP/PhoQ is essential for Salmonella enterica serovar Typhimurium virulence. Here, we report that PhoP is methylated extensively. Two consecutive glutamate (E) and aspartate (D)/E residues, i.e., E8/D9 and E107/E108, and arginine (R) 112 can be methylated. Individual mutation of these above-mentioned residues caused impaired phosphorylation and dimerization or DNA-binding ability of PhoP to a different extent and led to attenuated bacterial virulence. With the help of specific antibodies recognizing methylated E8 and monomethylated R112, we found that the methylation levels of E8 or R112 decreased dramatically when bacteria encountered low magnesium, acidic pH, or phagocytosis by macrophages, under which PhoP can be activated. Furthermore, CheR, a bacterial chemotaxis methyltransferase, was identified to methylate R112. Overexpression of cheR decreased PhoP activity but increased PhoP stability. Together, the current study reveals that methylation plays an important role in regulating PhoP activities in response to environmental cues and, consequently, modulates Salmonella virulence. IMPORTANCE Posttranslational modifications (PTMs) play an important role in regulating enzyme activities, protein-protein interactions, or DNA-protein recognition and, consequently, modulate many biological functions. We demonstrated that PhoP, the response regulator of PhoP/PhoQ two-component system, could be methylated on several evolutionally conserved amino acid residues. These amino acid residues were crucial for PhoP phosphorylation or dimerization, DNA-binding ability of PhoP, and Salmonella virulence. Interestingly, methylation negatively regulated the activity of PhoP. A bacterial chemotaxis methyltransferase CheR was involved in PhoP methylation. Methylation of PhoP could stabilize it in an inactive conformation. Our work provides a more informative depiction of PhoP PTM and markedly improves our understanding of the coordinate regulation of bacterial chemotaxis and virulence.


Asunto(s)
Proteínas Bacterianas/metabolismo , Metiltransferasas/metabolismo , Infecciones por Salmonella/microbiología , Salmonella typhimurium/enzimología , Salmonella typhimurium/patogenicidad , Animales , Proteínas Bacterianas/genética , Femenino , Regulación Bacteriana de la Expresión Génica , Humanos , Metilación , Metiltransferasas/genética , Ratones , Ratones Endogámicos BALB C , Salmonella typhimurium/genética , Virulencia
15.
Elife ; 102021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34232858

RESUMEN

Type VI Secretion Systems (T6SSs) are widespread in bacteria and can dictate the development and organisation of polymicrobial ecosystems by mediating contact dependent killing. In Neisseria species, including Neisseria cinerea a commensal of the human respiratory tract, interbacterial contacts are mediated by Type four pili (Tfp) which promote formation of aggregates and govern the spatial dynamics of growing Neisseria microcolonies. Here, we show that N. cinerea expresses a plasmid-encoded T6SS that is active and can limit growth of related pathogens. We explored the impact of Tfp on N. cinerea T6SS-dependent killing within a colony and show that pilus expression by a prey strain enhances susceptibility to T6SS compared to a non-piliated prey, by preventing segregation from a T6SS-wielding attacker. Our findings have important implications for understanding how spatial constraints during contact-dependent antagonism can shape the evolution of microbial communities.


Asunto(s)
Fimbrias Bacterianas/metabolismo , Microbiota/fisiología , Neisseria cinerea/fisiología , Simbiosis/genética , Sistemas de Secreción Tipo VI/metabolismo
16.
EMBO J ; 39(10): e102922, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32337752

RESUMEN

Although multiprotein membrane complexes play crucial roles in bacterial physiology and virulence, the mechanisms governing their quality control remain incompletely understood. In particular, it is not known how unincorporated, orphan components of protein complexes are recognised and eliminated from membranes. Rhomboids, the most widespread and largest superfamily of intramembrane proteases, are known to play key roles in eukaryotes. In contrast, the function of prokaryotic rhomboids has remained enigmatic. Here, we show that the Shigella sonnei rhomboid proteases GlpG and the newly identified Rhom7 are involved in membrane protein quality control by specifically targeting components of respiratory complexes, with the metastable transmembrane domains (TMDs) of rhomboid substrates protected when they are incorporated into a functional complex. Initial cleavage by GlpG or Rhom7 allows subsequent degradation of the orphan substrate. Given the occurrence of this strategy in an evolutionary ancient organism and the presence of rhomboids in all domains of life, it is likely that this form of quality control also mediates critical events in eukaryotes and protects cells from the damaging effects of orphan proteins.


Asunto(s)
Endopeptidasas/metabolismo , Proteínas de la Membrana/metabolismo , Shigella sonnei/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Transporte de Electrón , Endopeptidasas/química , Dominios Proteicos , Proteolisis , Shigella sonnei/metabolismo , Especificidad por Sustrato
17.
PLoS Pathog ; 16(3): e1008372, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32208456

RESUMEN

It is increasingly being recognised that the interplay between commensal and pathogenic bacteria can dictate the outcome of infection. Consequently, there is a need to understand how commensals interact with their human host and influence pathogen behaviour at epithelial surfaces. Neisseria meningitidis, a leading cause of sepsis and meningitis, exclusively colonises the human nasopharynx and shares this niche with several other Neisseria species, including the commensal Neisseria cinerea. Here, we demonstrate that during adhesion to human epithelial cells N. cinerea co-localises with molecules that are also recruited by the meningococcus, and show that, similar to N. meningitidis, N. cinerea forms dynamic microcolonies on the cell surface in a Type four pilus (Tfp) dependent manner. Finally, we demonstrate that N. cinerea colocalises with N. meningitidis on the epithelial cell surface, limits the size and motility of meningococcal microcolonies, and impairs the effective colonisation of epithelial cells by the pathogen. Our data establish that commensal Neisseria can mimic and affect the behaviour of a pathogen on epithelial cell surfaces.


Asunto(s)
Adhesión Bacteriana , Células Epiteliales/microbiología , Fimbrias Bacterianas/metabolismo , Neisseria cinerea/crecimiento & desarrollo , Neisseria meningitidis/crecimiento & desarrollo , Células A549 , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Neisseria cinerea/patogenicidad , Neisseria meningitidis/patogenicidad
18.
J Infect Dis ; 222(11): 1826-1836, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32163577

RESUMEN

Plasmids are vehicles for horizontal gene transfer between bacteria, and in Neisseria gonorrhoeae plasmids can mediate high-level antimicrobial resistance (AMR). Using genomic and phylogenetic analyses, we show that plasmids are widespread in a collection of 3724 gonococcal isolates from 56 countries, and characterized the conjugative, ß-lactamase and cryptic plasmids. We found that variants of the conjugative plasmid (which can mediate tetracycline resistance) and the ß-lactamase plasmid expressing TEM-135 are associated with distinct gonococcal lineages. Furthermore, AMR plasmids are significantly more prevalent in gonococci from less wealthy countries, highlighting the need for further studies. More than 94% of gonococci possess the cryptic plasmid, with its absence correlated with the presence of a novel chromosomal type IV secretion system. Our results reveal the extent of plasmid-mediated AMR in the gonococcus, particularly in less wealthy countries, where diagnostic and therapeutic options can be limited, and highlight the risk of their global spread.


Asunto(s)
Estatus Económico , Neisseria gonorrhoeae/genética , Plásmidos/química , Antibacterianos , Farmacorresistencia Bacteriana/genética , Transferencia de Gen Horizontal , Genómica , Gonorrea/microbiología , Humanos , Neisseria gonorrhoeae/clasificación , Neisseria gonorrhoeae/aislamiento & purificación , Filogenia , Sistemas de Secreción Tipo IV/genética , Secuenciación Completa del Genoma , beta-Lactamasas/genética
19.
J Infect Dis ; 222(11): 1816-1825, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32163580

RESUMEN

BACKGROUND: Gonorrhea, caused by the bacterium Neisseria gonorrhoeae, is a globally prevalent sexually transmitted infection. The dynamics of gonococcal population biology have been poorly defined due to a lack of resolution in strain typing methods. METHODS: In this study, we assess how the core genome can be used to improve our understanding of gonococcal population structure compared with current typing schemes. RESULTS: A total of 1668 loci were identified as core to the gonococcal genome. These were organized into a core genome multilocus sequence typing scheme (N gonorrhoeae cgMLST v1.0). A clustering algorithm using a threshold of 400 allelic differences between isolates resolved gonococci into discrete and stable core genome groups, some of which persisted for multiple decades. These groups were associated with antimicrobial genotypes and non-overlapping NG-STAR and NG-MAST sequence types. The MLST-STs were more widely distributed among core genome groups. CONCLUSIONS: Clustering with cgMLST identified globally distributed, persistent, gonococcal lineages improving understanding of the population biology of gonococci and revealing its population structure. These findings have implications for the emergence of antimicrobial resistance in gonococci and how this is associated with lineages, some of which are more predisposed to developing antimicrobial resistance than others.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Genoma Bacteriano/genética , Gonorrea/microbiología , Metagenómica/métodos , Neisseria gonorrhoeae/genética , Antibacterianos/farmacología , Técnicas de Tipificación Bacteriana , ADN Bacteriano , Genotipo , Humanos , Epidemiología Molecular , Tipificación de Secuencias Multilocus/métodos , Neisseria gonorrhoeae/efectos de los fármacos , Filogenia , Secuenciación Completa del Genoma
20.
Cell Rep ; 30(5): 1373-1384.e4, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32023456

RESUMEN

ADP-ribosylation of proteins is crucial for fundamental cellular processes. Despite increasing examples of DNA ADP-ribosylation, the impact of this modification on DNA metabolism and cell physiology is unknown. Here, we show that the DarTG toxin-antitoxin system from enteropathogenic Escherichia coli (EPEC) catalyzes reversible ADP-ribosylation of single-stranded DNA (ssDNA). The DarT toxin recognizes specific sequence motifs. EPEC DarG abrogates DarT toxicity by two distinct mechanisms: removal of DNA ADP-ribose (ADPr) groups and DarT sequestration. Furthermore, we investigate how cells recognize and deal with DNA ADP-ribosylation. We demonstrate that DNA ADPr stalls replication and is perceived as DNA damage. Removal of ADPr from DNA requires the sequential activity of two DNA repair pathways, with RecF-mediated homologous recombination likely to transfer ADP-ribosylation from single- to double-stranded DNA (dsDNA) and subsequent nucleotide excision repair eliminating the lesion. Our work demonstrates that these DNA repair pathways prevent the genotoxic effects of DNA ADP-ribosylation.


Asunto(s)
ADP-Ribosilación , Reparación del ADN , Replicación del ADN , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Escherichia coli Enteropatógena/metabolismo , Proteínas de Escherichia coli/metabolismo , Recombinación Homóloga , Adenosina Difosfato Ribosa/metabolismo , Viabilidad Microbiana , Modelos Biológicos , Respuesta SOS en Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...