Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomicro Lett ; 16(1): 218, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884868

RESUMEN

Microgels prepared from natural or synthetic hydrogel materials have aroused extensive attention as multifunctional cells or drug carriers, that are promising for tissue engineering and regenerative medicine. Microgels can also be aggregated into microporous scaffolds, promoting cell infiltration and proliferation for tissue repair. This review gives an overview of recent developments in the fabrication techniques and applications of microgels. A series of conventional and novel strategies including emulsification, microfluidic, lithography, electrospray, centrifugation, gas-shearing, three-dimensional bioprinting, etc. are discussed in depth. The characteristics and applications of microgels and microgel-based scaffolds for cell culture and delivery are elaborated with an emphasis on the advantages of these carriers in cell therapy. Additionally, we expound on the ongoing and foreseeable applications and current limitations of microgels and their aggregate in the field of biomedical engineering. Through stimulating innovative ideas, the present review paves new avenues for expanding the application of microgels in cell delivery techniques.

2.
J Colloid Interface Sci ; 662: 413-425, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38359505

RESUMEN

Acute kidney injury (AKI) results from the rapid deterioration of renal function, which is mainly treated by transplantation and dialysis, and has a high mortality rate. Inflammation induced by excess reactive oxygen/nitrogen species (RONS) plays a crucial role in AKI. Although small molecule antioxidants have been utilized to alleviate AKI, low bioavailability and side-effect of these drugs tremendously limit their clinical use. Hence, we successfully construct ultra-small (2-4 nm) rhodium nanoparticles modified with l-serine (denoted as Rh-Ser). Our results show that Rh-Ser with multiple enzyme-mimicking activities, allows remove various RONS to protect damaged kidney cells. Additionally, the ultrasmall size of Rh-Ser is conducive to enrichment in the renal tubules, and the modification of l-serine enables Rh-Ser to bind to kidney injury molecule-1, which is highly expressed on the surface of damaged renal cells, thereby targeting the damaged kidney and increasing the retention time. Moreover, Rh-Ser allows the production of oxygen at the inflammatory site, thus further improving hypoxia and inhibiting pro-inflammatory macrophages to relieve inflammation, and increasing the survival rate of AKI mice from 0 to 80%, which exhibits a better therapeutic effect than that of small molecule drug. Photoacoustic and fluorescence imaging can effectively monitor and evaluate the enrichment and therapeutic effect of Rh-Ser. Our study provides a promising strategy for the targeted treatment of AKI via RONS scavenging and inflammatory regulation.


Asunto(s)
Lesión Renal Aguda , Rodio , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Oxígeno , Rodio/farmacología , Especies de Nitrógeno Reactivo/efectos adversos , Medicina de Precisión , Riñón , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo , Inflamación/tratamiento farmacológico , Serina
3.
Adv Mater ; 36(34): e2304846, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38252896

RESUMEN

Decellularized extracellular matrix (dECM)-based hydrogels are widely applied to additive biomanufacturing strategies for relevant applications. The extracellular matrix components and growth factors of dECM play crucial roles in cell adhesion, growth, and differentiation. However, the generally poor mechanical properties and printability have remained as major limitations for dECM-based materials. In this study, heart-derived dECM (h-dECM) and meniscus-derived dECM (Ms-dECM) bioinks in their pristine, unmodified state supplemented with the photoinitiator system of tris(2,2-bipyridyl) dichlororuthenium(II) hexahydrate and sodium persulfate, demonstrate cytocompatibility with volumetric bioprinting processes. This recently developed bioprinting modality illuminates a dynamically evolving light pattern into a rotating volume of the bioink, and thus decouples the requirement of mechanical strengths of bioprinted hydrogel constructs with printability, allowing for the fabrication of sophisticated shapes and architectures with low-concentration dECM materials that set within tens of seconds. As exemplary applications, cardiac tissues are volumetrically bioprinted using the cardiomyocyte-laden h-dECM bioink showing favorable cell proliferation, expansion, spreading, biomarker expressions, and synchronized contractions; whereas the volumetrically bioprinted Ms-dECM meniscus structures embedded with human mesenchymal stem cells present appropriate chondrogenic differentiation outcomes. This study supplies expanded bioink libraries for volumetric bioprinting and broadens utilities of dECM toward tissue engineering and regenerative medicine.


Asunto(s)
Bioimpresión , Matriz Extracelular Descelularizada , Hidrogeles , Tinta , Ingeniería de Tejidos , Bioimpresión/métodos , Hidrogeles/química , Animales , Matriz Extracelular Descelularizada/química , Ingeniería de Tejidos/métodos , Miocitos Cardíacos/citología , Andamios del Tejido/química , Proliferación Celular , Humanos , Materiales Biocompatibles/química , Matriz Extracelular/química , Matriz Extracelular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA