Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202404295, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649323

RESUMEN

Homogeneous electrocatalysts can indirect oxidate the high overpotential substrates through single-electron transfer on the electrode surface, enabling efficient operation of organic electrosynthesis catalytic cycles. However, the problems of this chemistry still exist such as high dosage, difficult recovery, and low catalytic efficiency. Single-atom catalysts (SACs) exhibit high atom utilization and excellent catalytic activity, hold great promise in addressing the limitations of homogeneous catalysts. In view of this, we have employed Fe-SA@NC as an advanced redox mediator to try to change this situation. Fe-SA@NC was synthesized using an encapsulation-pyrolysis method, and it demonstrated remarkable performance as a redox mediator in a range of reported organic electrosynthesis reactions, and enabling the construction of various C-C/C-X bonds. What's more, Fe-SA@NC demonstrated a great potential in exploring new synthetic method for organic electrosynthesis. We em-ployed it to develop a new electro-oxidative ring-opening transformation of cyclopropyl amides. In this new reaction system, Fe-SA@NC showed good tolerance to drug molecules with complex structures, as well as enabling flow electrochemical syntheses and gram-scale transformations. This work highlights the great potential of SACs in organic electrosynthesis, thereby opening a new avenue in synthetic chemistry.

2.
Adv Sci (Weinh) ; 11(7): e2308238, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38064182

RESUMEN

Alkenylboronates are highly versatile building blocks and valuable reagents in the synthesis of complex molecules. Compared with that of monosubstituted alkenylboronates, the synthesis of multisubstituted alkenylboronates is challenging. The copper-catalyzed carboboration of alkynes is an operationally simple and straightforward method for synthesizing bis/trisubstituted alkenylboronates. In this work, a series of copper-metallized N-Heterocyclic Carbene (NHC) ligand porous polymer catalysts are designed and synthesized in accordance with the mechanism of carboboration. By using CuCl@POL-NHC-Ph as the optimal nanocatalyst, this study realizes the ß-regio- and stereoselective (syn-addition) 1,2-carboboration of alkynes (regioselectivity up to >99:1) with satisfactory yields and a wide range of substrates. This work not only overcomes the selectivity of carboboration but also provides a new strategy for the design of nanocatalysts and their application in organic synthesis.

3.
Angew Chem Int Ed Engl ; 63(3): e202315032, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38057563

RESUMEN

The oxygen evolution reaction (OER), characterized by a four-electron transfer kinetic process, represents a significant bottleneck in improving the efficiency of hydrogen production from water electrolysis. Consequently, extensive research efforts have been directed towards identifying single-atom electrocatalysts with exceptional OER performance. Despite the comprehensive understanding of the OER mechanism, its application to other valuable synthetic reactions has been limited. Herein, we leverage the MOOH intermediate, a key species in the Mn-N-C single-atom catalyst (Mn-SA@NC), which can be cyclically delivered in the OER. We exploit this intermediate' s capability to facilitate electrophilic transfer with silane, enabling efficient silane oxidation under electrochemical conditions. The SAC electrocatalytic system exhibits remarkable performance with catalyst loadings as low as 600 ppm and an exceptional turnover number of 9132. Furthermore, the catalytic method demonstrates stability under a 10 mmol flow chemistry setup. By serving as an OER electrocatalyst, the Mn-SA@NC drives the entire reaction, establishing a practical Mn SAC-catalyzed organic electrosynthesis system. This synthesis approach not only presents a promising avenue for the utilization of electrocatalytic OER but also highlights the potential of SACs as an attractive platform for organic electrosynthesis investigations.

4.
Org Lett ; 26(1): 193-197, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38147844

RESUMEN

In this study, a multicomponent reaction via the Mannich intermediate was developed using methanol, secondary amine, and sulfonamide as starting materials. This method uses methanol as a green C1 source. The substrate scope is wide, and the yield is good. The mechanistic study shows that methanol generates formaldehyde under electrochemical conditions, and sulfonyl amidine as a nucleophile reacts with Schiff base intermediates to form N-sulfonyl amidine in a single step.

5.
Org Biomol Chem ; 21(39): 7895-7899, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37747203

RESUMEN

Aminophenols are a class of important compounds with various pharmacological activities such as anticancer, anti-inflammatory, antimalarial, and antibacterial activities. Herein, we introduce a mild and efficient electrochemical selenium-catalyzed strategy to synthesize polysubstituted aminophenols. High atom efficiency and transition metal-free and oxidant-free conditions are the striking features of this protocol. By merging electrochemical and organoselenium-catalyzed processes, the intramolecular rearrangement of N-aryloxyamides produces para-amination products at room temperature in a simple undivided cell.

6.
J Colloid Interface Sci ; 652(Pt A): 866-877, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37633111

RESUMEN

Efficient utilizing CO2 is crucial approaches in achieving carbon neutralization. One of the challenges lies in the in-situ conversion of low concentration CO2 found in waste gases. This study introduces a novel heterogeneous catalyst known as silver nanoparticles in porous N-heterocyclic carbene polymer (Ag@POP-NL-3). The catalyst is synthesized via a streamlined pre-coordination method. Ag@POP-NL-3 exhibits uniform distribution of silver nanoparticles, a porous structure and nitrogen activation groups. It demonstrates high efficiency and selectivity in absorbing and activating CO2 and enabling the conversion of low concentration CO2 (30 vol%) from lime kiln waste gas into cyclic carbonate under mild conditions. This catalytic system achieves both CO2 capture and resource utilization of CO2 simultaneously, effectively fixing low-concentration CO2 from waste gases into C2+ valuable chemicals. This approach elegantly addresses two goals in one solution.

7.
Org Lett ; 25(32): 6001-6005, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37548921

RESUMEN

An electrochemical facilitated three-component trifluoromethylation/spirocyclization reaction of N-(arylsulfonyl)acrylamides, CF3SO2Na, and H2O has been developed. Without the requirement of chemical oxidants, a number of unexplored trifluoromethylated 4-azaspiro[4.5]decanes were obtained in satisfactory yields under mild conditions. This work provides a new synthetic strategy for fluorine-containing spirocyclic compounds and shows a new perspective for the reactivity study of N-(arylsulfonyl)acrylamides.

8.
Nature ; 617(7961): 519-523, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37198309

RESUMEN

During the chlor-alkali process, in operation since the nineteenth century, electrolysis of sodium chloride solutions generates chlorine and sodium hydroxide that are both important for chemical manufacturing1-4. As the process is very energy intensive, with 4% of globally produced electricity (about 150 TWh) going to the chlor-alkali industry5-8, even modest efficiency improvements can deliver substantial cost and energy savings. A particular focus in this regard is the demanding chlorine evolution reaction, for which the state-of-the-art electrocatalyst is still the dimensionally stable anode developed decades ago9-11. New catalysts for the chlorine evolution reaction have been reported12,13, but they still mainly consist of noble metal14-18. Here we show that an organocatalyst with an amide functional group enables the chlorine evolution reaction; and that in the presence of CO2, it achieves a current density of 10 kA m-2 and a selectivity of 99.6% at an overpotential of only 89 mV and thus rivals the dimensionally stable anode. We find that reversible binding of CO2 to the amide nitrogen facilitates formation of a radical species that plays a critical role in Cl2 generation, and that might also prove useful in the context of Cl- batteries and organic synthesis19-21. Although organocatalysts are typically not considered promising for demanding electrochemical applications, this work demonstrates their broader potential and the opportunities they offer for developing industrially relevant new processes and exploring new electrochemical mechanisms.

9.
J Org Chem ; 88(9): 5760-5771, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37027491

RESUMEN

Azoles and organoselenium compounds are pharmacologically important scaffolds in medicinal chemistry and natural products. We developed an efficient regioselective electrochemical aminoselenation reaction of 1,3-dienes, azoles, and diselenide derivatives to access selenium-containing allylazoles skeletons. This protocol is more economical and environmentally friendly and features a broad substrate scope; pyrazole, triazole, and tetrazolium were all tolerated under the standard conditions, which could be applied to the expedient synthesis of bioactive molecules and in the pharmaceutical industry.

10.
Org Biomol Chem ; 21(15): 3177-3182, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36961319

RESUMEN

The electrocatalytic ring-opening dihydroalkoxylation of N-aryl maleimides with alcohols under metal- and oxidant-free conditions is described. This electrochemical process consists of anodic single-electron transfer oxidation, cathodic radical reduction, rearrangement-ring cleavage and nucleophilic addition cascade, which employs tetrabutylammonium bromide not only as a redox catalyst but also as an efficient supporting electrolyte, and offers a practical and environmentally friendly route to ring-opening difunctionalization products.

11.
ChemSusChem ; 16(11): e202300170, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-36828776

RESUMEN

Industrial waste gas is one of the major sources of atmospheric CO2 , yet the direct conversion of the low concentrations of CO2 in waste gases into high value-added chemicals have been a great challenge. Herein, a copper-based N-heterocyclic carbene porous polymer catalyst (Cu@NHC-1) for the direct conversion of low concentration CO2 into oxazolidinones was successfully fabricated via a facile copolymerization process followed by the complexation with Cu(OAc)2 . A continuous flow device was designed to deliver a continuous and stable carbon source for the reaction. Due to the triple synergistic effect of its porous structure, nitrogen activation sites and catalytic Cu center, Cu@NHC-1 shows highly efficient and selective adsorption, activation, and conversion of the low concentration CO2 (30 vol%). Its practical application potential is demonstrated by the ability to successfully convert the CO2 in lime kiln waste gas into oxazolidinones in satisfactory yields under mild conditions.


Asunto(s)
Dióxido de Carbono , Oxazolidinonas , Dióxido de Carbono/química , Cobre/química , Polímeros/química , Porosidad , Gases , Catálisis
12.
Org Lett ; 24(44): 8239-8243, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36322527

RESUMEN

CO2 is an important C1 resource. We report a method for the synthesis of pharmacologically active 2-oxazolidinones by reacting CO2 with allylic amines. As opposed to previous addition reactions, the unsaturated double bonds are preserved. Thus, the product is more plastic and easier to use for subsequent structural modification. Furthermore, this method can also be applied to the synthesis of six-membered heterocycles (1,3-oxazinan-2-ones) and the participation of a low concentration of CO2, indicating it has certain practicability.

13.
Angew Chem Int Ed Engl ; 61(40): e202209749, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36000816

RESUMEN

Improving the stability of sensitive catalytic systems is an emerging research topic in the catalysis field. However, the current design of heterogeneous catalysts mainly improves their catalytic performance. This paper presents a single-atom catalyst (SAC) strategy to improve the cobalt-catalysed fluorination of acyl chlorides. A stable Co-F intermediate can be formed through the oxidative fluorination of Co1 -N4 @NC SAC, which can replace the unstable high-valent cobalt catalytic system and avoid the use of phosphine ligands. In the SAC system, KF can be employed as a fluorinating reagent to replace the AgF, which can be applied to various substrates and scale-up conversion with high turnover numbers (TON=1.58×106 ). This work also shows that inorganic SACs have tremendous potential for organofluorine chemistry, and it provides a good reference for follow-up studies on the structure-activity relationship between catalyst design and chemical reaction mechanisms.

14.
Eur J Med Chem ; 231: 114141, 2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35092899

RESUMEN

An efficient one-pot reaction for the synthesis of oxoaporphine alkaloids has been developed. Twenty-three compounds of oxoaporphine alkaloids were prepared and assessed for their antitumor activities. Most compounds inhibited the growth of T-24 tumor cells in vitro. Particularly, 4B displayed the most potent activity with an IC50 value of 0.5 µM, which was 19-fold more potent than the parent compound 4. The substitution at C3-position of oxoaporphine core by -NO2 significantly enhanced the anticancer activity. Mechanism studies indicated that 4 and 4B induced cell cycle arrest at G2/M phase; in contrast, 4V induced cell cycle arrest at the S phase. Increase of mitochondrial ROS/Ca2+ and decrease of MMP, accompanied by activation of caspase-3/9, were observed in T-24 cells after exposure to compounds 4, 4B and 4V, suggesting that the mitochondrial pathway was involved in the induced apoptosis. Moreover, compound 4B effectively inhibited tumor growth in a mouse xenograft model bearing T-24.


Asunto(s)
Antineoplásicos , Animales , Apoptosis , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ratones , Mitocondrias , Fase S
15.
J Org Chem ; 86(22): 16121-16127, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33599123

RESUMEN

The study reported an electrochemically mediated method for the preparation of 2,1-benzoxazoles from o-nitrophenylacetylenes. Different from the traditional electrochemical reduction of nitro to nitroso, the nitro group directly underwent a cyclization reaction with the alkyne activated by selenium cation generated by the anodic oxidation of diphenyl diselenide and finally produced the desired products.


Asunto(s)
Benzoxazoles , Selenio , Catálisis , Ciclización , Oxidación-Reducción
16.
J Ethnopharmacol ; 281: 113548, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-33152427

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Huangkui capsule (HKC), extracted from Abelmoschus manihot (L.) medic (AM), as a patent proprietary Chinese medicine on the market for approximately 20 years, has been clinically used to treat chronic glomerulonephritis. Renal fibrosis has been implicated in the onset and development of diabetic nephropathy (DN). However, the potential application of HKC for preventing DN has not been evaluated. AIM OF THE STUDY: This study was designed to investigate the efficacy and underlying mechanisms of HKC combined with metformin (MET), the first-line medication for treating type 2 diabetes, in the treatment of renal interstitial fibrosis. MATERIALS AND METHODS: A rat model of diabetes-associated renal fibrosis was established by intraperitoneal injection of streptozotocin (STZ, 65 mg/kg) combined with a high-fat and high-glucose diet. The rats were randomly divided into five groups: normal control, DN, HKC (1.0 g/kg/day), MET (100 mg/kg/d), and HKC plus MET (1.0 g/kg/day + 100 mg/kg/d). Following drug administration for 8 weeks, we collected blood, urine, and kidney tissue for analysis. Biochemical markers and metabolic parameters were detected using commercial kits. Histopathological staining was performed to monitor morphological changes in the rat kidney. High-glucose-induced human kidney HK-2 cells were used to evaluate the renal protective effects of HKC combined with MET (100 µg/mL+10 mmol/L). MTT assay and acridine orange/ethidium bromide were used to examine cell proliferation inhibition rates and apoptosis. Immunofluorescence assay and Western blot analysis were performed to detect renal fibrosis-related proteins including Klotho, TGF-ß1, and phosphorylated (p)-p38. RESULTS: Combination therapy (HKC plus MET) significantly improved the weight, reduced blood glucose (BG), blood urea nitrogen (BUN), total cholesterol (T-CHO), triglycerides (TG), low-density lipoprotein (LDL) and increased the level of high-density lipoprotein (HDL) of DN rats. Combination therapy also significantly reduced urine serum creatinine (SCR) and urine protein (UP) levels as well as reduced the degrees of renal tubule damage and glomerulopathy in DN rats. Combination therapy ameliorated renal fibrosis, as evidenced by reduced levels of alpha-smooth muscle actin and fibronectin and increased expression of E-cadherin in the kidneys. Moreover, HKC plus MET alleviated the degree of DN in part via the Klotho/TGF-ß1/p38MAPK signaling pathway. In vitro experiments showed that combination therapy significantly inhibited cell proliferation and apoptosis and regulated fibrosis-related proteins in high-glucose (HG)-induced HK-2 cells. Further studies revealed that combination therapy suppressed cell proliferation and fibrosis by inhibiting the Klotho-dependent TGF-ß1/p38MAPK pathway. CONCLUSIONS: HKC plus MET in combination suppressed abnormal renal cell proliferation and fibrosis by inhibiting the Klotho-dependent TGF-ß1/p38MAPK pathway. Collectively, HKC combined with MET effectively improved DN by inhibiting renal fibrosis-associated proteins and blocking the Klotho/TGF-ß1/p38MAPK signaling pathway. These findings improve the understanding of the pathogenesis of diabetes-associated complications and support that HKC plus MET combination therapy is a promising strategy for preventing DN.


Asunto(s)
Nefropatías Diabéticas/inducido químicamente , Nefropatías Diabéticas/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Proteínas Klotho/metabolismo , Metformina/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Diabetes Mellitus Experimental , Dieta Alta en Grasa/efectos adversos , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/administración & dosificación , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/administración & dosificación , Glucosa/efectos adversos , Humanos , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/farmacología , Proteínas Klotho/genética , Masculino , Metformina/administración & dosificación , Fitoterapia , Ratas , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta1/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
17.
Front Pharmacol ; 11: 566611, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101025

RESUMEN

BACKGROUND: Recently, progression of chronic renal failure (CRF) has been closely associated with gut microbiota dysbiosis and intestinal metabolite-derived microinflammation. In China, total flavones of Abelmoschus manihot (TFA), a component of Abelmoschus manihot, has been widely used to delay CRF progression in clinics for the past two decades. However, the overall therapeutic mechanisms remain obscure. In this study, we designed experiments to investigate the renoprotective effects of TFA in CRF progression and its underlying mechanisms involved in gut microbiota and microinflammation, compared with febuxostat (FEB), a potent non-purine selective inhibitor of xanthine oxidase. METHODS: In vivo, the CRF rat models were induced by uninephrectomy, potassium oxonate, and proinflammatory diet, and received either TFA suspension, FEB, or vehicle after modeling for 28 days. In vitro, the RAW 264.7 cells were exposed to lipopolysaccharide (LPS) with or without TFA or FEB. Changes in parameters related to renal injury, gut microbiota dysbiosis, gut-derived metabolites, and microinflammation were analyzed in vivo. Changes in macrophage polarization and autophagy and its related signaling were analyzed both in vivo and in vitro. RESULTS: For the modified CRF model rats, the administration of TFA and FEB improved renal injury, including renal dysfunction and renal tubulointerstitial lesions; remodeled gut microbiota dysbiosis, including decreased Bacteroidales and Lactobacillales and increased Erysipelotrichales; regulated gut-derived metabolites, including d-amino acid oxidase, serine racemase, d-serine, and l-serine; inhibited microinflammation, including interleukin 1ß (IL1ß), tumor necrosis factor-α, and nuclear factor-κB; and modulated macrophage polarization, including markers of M1/M2 macrophages. More importantly, TFA and FEB reversed the expression of beclin1 (BECN1) and phosphorylation of p62 protein and light chain 3 (LC3) conversion in the kidneys by activating the adenosine monophosphate-activated protein kinase-sirtuin 1 (AMPK-SIRT1) signaling. Further, TFA and FEB have similar effects on macrophage polarization and autophagy and its related signaling in vitro. CONCLUSION: In this study, we demonstrated that TFA, similar to FEB, exerts its renoprotective effects partially by therapeutically remodeling gut microbiota dysbiosis and inhibiting intestinal metabolite-derived microinflammation. This is achieved by adjusting autophagy-mediated macrophage polarization through AMPK-SIRT1 signaling. These findings provide more accurate information on the role of TFA in delaying CRF progression.

18.
Front Pharmacol ; 11: 996, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32719603

RESUMEN

Renal fibrosis is the final common pathological manifestation of almost all progressive chronic kidney diseases (CKD). Transient receptor potential canonical (TRPC) channels, especially TRPC3/6, were proposed to be essential therapeutic targets for kidney injury. Huangkui capsule (HKC), an important adjuvant therapy for CKD, showed superior efficacy for CKD at stages 1-2 in clinical practice. However, its anti-fibrotic effect and the underlying mechanisms remain to be investigated. In the present study, we evaluated the efficacy of HKC on renal fibrosis in a mouse model of unilateral ureteral obstruction (UUO) and explored the potential underlying mechanism. Administration of HKC by intragastric gavage dose-dependently suppressed UUO-induced kidney injury and tubulointerstitial fibrosis. Similarly, HKC suppressed the expression level of α-smooth muscle actin (α-SMA), increased the expression of E-cadherin, and suppressed the mRNA expression of a plethora of proinflammatory mediators that are necessary for the progression of renal fibrosis. Mechanistically, HKC suppressed both canonical and non-canonical TGF-ß signaling pathways in UUO mice as well as the TRPC6/calcineurin A (CnA)/nuclear factor of activated T cells (NFAT) signaling axis. In addition, TRPC6 knockout mice and HKC treated wild type mice displayed comparable protection on UUO-triggered kidney tubulointerstitial injury, interstitial fibrosis, and α-SMA expression. More importantly, HKC had no additional protective effect on UUO-triggered kidney tubulointerstitial injury and interstitial fibrosis in TRPC6 knockout mouse. Further investigation demonstrated that HKC could directly suppress TRPC3/6 channel activities. Considered together, these data demonstrated that the protective effect of HKC on renal injury and interstitial fibrosis is dependent on TRPC6, possibly through direct inhibition of TRPC6 channel activity and indirect suppression of TRPC6 expression.

19.
Org Biomol Chem ; 18(28): 5315-5333, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32638806

RESUMEN

In general, halogenide anions are anodically oxidized into active species, which can be elemental halogen, halogen cations, or halogen radicals. These species subsequently react with substrates, such as olefins, ketones, or amines, to generate halogenated products. We review the mechanisms of these reactions.

20.
Org Biomol Chem ; 18(26): 4936-4940, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32583841

RESUMEN

A convenient and efficient palladium-catalyzed approach has been developed for the synthesis of 5-amino-1,2,4-oxadiazoles from amidoximes and isocyanides. Various 5-amino-1,2,4-oxadiazoles were obtained in moderate to high yields under mild conditions. The key to the success of this strategy involves new C-N bond and C-O bond formation via palladium-catalyzed isocyanide insertion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...