Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1381830, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39144619

RESUMEN

Objective: This study aimed to assess the chemopreventive effect of ursodeoxycholic acid (UDCA) against COVID-19 and to analyze infection risk factors, symptoms, and recovery in outpatients with UDCA exposure. Methods: The study enrolled outpatients prescribed UDCA from the Second Affiliated Hospital of Chongqing Medical University, China, between 01 July 2022, and 31 December 2022. Data on demographics, comorbidities, and drug combinations were collected using electronic medical records. COVID-19 infection, symptoms, severity, prognosis, vaccinations, and UDCA administration were surveyed by telephone interviews. UDCA non-users served as controls and were matched in a 1:2 ratio with UDCA users using propensity score matching with the nearest neighbor algorithm. Infection rates, symptomatology, severity, and prognosis were compared between matched and control cohorts, and risk factors and infection and recovery symptoms were analyzed in UDCA-exposed outpatients. Results: UDCA-exposed outpatients (n = 778, 74.8%) and matched UDCA users (n = 95, 74.2%) showed significantly lower SARS-CoV-2 infection rates than control patients (n = 59, 92.2%) (p < 0.05). The matched UDCA group exhibited substantially lower fever, cough, sore throat, and fatigue rates than controls (p < 0.05). Participants with UDCA exposure generally experienced mild symptoms, while those without UDCA had moderate symptoms. The matched UDCA group also had significantly shorter durations of fever and cough (p < 0.05). Risk factors such as age over 60, less than 1 month of UDCA administration, diabetes mellitus, and coronary artery disease significantly increased SARS-CoV-2 infection rates (p < 0.05), while smoking led to a decrease (p < 0.05). Hypertension was associated with a prolonged COVID-19 recovery (p < 0.05), while smoking, vaccination, and fatty liver disease were associated with shorter recovery periods (p < 0.05). The main symptoms in the full UDCA cohort were fever, cough, and sore throat, with fatigue, cough, and hyposthenia being the most persistent. Conclusion: UDCA demonstrated chemopreventive effect against SARS-CoV-2 in outpatients by significantly reducing infection incidence and mitigating COVID-19 symptoms, severity, and recovery duration. Old age, short UDCA course, and comorbidities such as diabetes mellitus and CAD increased infection rates, while hypertension prolonged recovery. Smoking, vaccination, and fatty liver disease reduced infection rates and shortened recovery. UDCA had minimal impact on symptom types. Larger and longer-term clinical studies are needed further to assess UDCA's effectiveness in COVID-19 prevention or treatment.

2.
Front Neurol ; 15: 1340959, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550342

RESUMEN

Objective: We aimed to investigate the brain network activity during seizures in patients with untreated juvenile absence epilepsy. Methods: Thirty-six juvenile absence epilepsy (JAE) patients with a current high frequency of seizures (more than five seizures during a 2 h EEG examination) were included. Each participant underwent a 2 h video EEG examination. Five 10 s EEG epochs for inter-ictal, pre-ictal, and post-ictal, and five 5 s EEG epochs for ictal states were extracted. Five 10 s resting-state EEG epochs for each participant from a sex- and age-matched healthy control (HC) were enrolled. The topological parameters of the brain networks were calculated using a graph theory analysis. Results: Compared with the resting state of the HC group, the global efficiency, local efficiency, and clustering coefficients of the JAE group decreased in the inter-ictal state. In addition, the ictal state showed significantly increased global and local efficiency and clustering coefficients (p < 0.05) and a decreased small-world index and the shortest path length (p < 0.05) in the theta and alpha bands, compared to the remaining states within the JAE group. Moreover, subgroup analysis revealed that those JAE patients with typical 3 Hz discharges had upgraded global efficiency, local efficiency, and clustering coefficients in both delta and beta1 bands, compared to those JAE patients with non-3 Hz discharges during seizures. Conclusion: The present study supported the idea that the changes in the EEG brain networks in JAE patients are characterized by decreased global and local efficiency and clustering coefficient in the alpha band. Moreover, the onset of seizures is accompanied by excessively enhanced network efficiency. JAE patients with different ictal discharge patterns may have different functional network oscillations.

3.
Nature ; 593(7858): 211-217, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33981050

RESUMEN

Advanced beyond-silicon electronic technology requires both channel materials and also ultralow-resistance contacts to be discovered1,2. Atomically thin two-dimensional semiconductors have great potential for realizing high-performance electronic devices1,3. However, owing to metal-induced gap states (MIGS)4-7, energy barriers at the metal-semiconductor interface-which fundamentally lead to high contact resistance and poor current-delivery capability-have constrained the improvement of two-dimensional semiconductor transistors so far2,8,9. Here we report ohmic contact between semimetallic bismuth and semiconducting monolayer transition metal dichalcogenides (TMDs) where the MIGS are sufficiently suppressed and degenerate states in the TMD are spontaneously formed in contact with bismuth. Through this approach, we achieve zero Schottky barrier height, a contact resistance of 123 ohm micrometres and an on-state current density of 1,135 microamps per micrometre on monolayer MoS2; these two values are, to the best of our knowledge, the lowest and highest yet recorded, respectively. We also demonstrate that excellent ohmic contacts can be formed on various monolayer semiconductors, including MoS2, WS2 and WSe2. Our reported contact resistances are a substantial improvement for two-dimensional semiconductors, and approach the quantum limit. This technology unveils the potential of high-performance monolayer transistors that are on par with state-of-the-art three-dimensional semiconductors, enabling further device downscaling and extending Moore's law.

4.
Seizure ; 88: 15-21, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33799135

RESUMEN

OBJECTIVE: To investigate whether the parameters of EEG microstates changed before and after an absence seizure episode. METHODS: AE patients with a current high frequency of seizures were included (n=21). Each included subject underwent a two-hour and 19-channel video EEG examination. Five epochs of 10-second EEG data in interictal, pre-seizure, and post-seizure states were collected from each AE patient. Five 10-second resting-state EEG epochs from sex- and age-matched HCs who reported no history of neurological or psychiatric disorders and visited the hospital for routine physical examinations were collected. Microstate analysis and source localization of microstates were performed using the LORETA KEY tool. RESULTS: Compared with the resting-state EEGs of HCs, the interictal EEGs of AE patients showed a higher relative transition rate from microstates B to D (p<0.05). From interictal to pre-seizure EEG, the total time ratio of microstate C and the occurrence of microstate B decreased significantly, while the duration of microstate B increased significantly (p<0.05). Compared with pre-seizure EEGs, microstate C in post-seizure EEGs showed a significantly downregulated total time percentage and occurrence (p<0.05). The source localization of each microstate in each condition also varied and showed spatial recovery tends from pre- to post-seizure states. CONCLUSION: Altered EEG microstate dynamics exist between inter-ictal EEGs of AE patients and resting-state EEGs of HCs and between pre- and post-seizure EEGs in AE patients. The EEG microstates of epileptic patients before and after absence seizures are characterized by a "slowdown" in transitions between microstates. Microstates might be used as an index to evaluate the temporal and spatial recovery process of absence seizures in AE.


Asunto(s)
Epilepsia Tipo Ausencia , Encéfalo , Mapeo Encefálico , Electroencefalografía , Epilepsia Tipo Ausencia/diagnóstico , Humanos , Convulsiones/diagnóstico
5.
Sci Adv ; 6(48)2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33246950

RESUMEN

Skin-mountable microelectronics are garnering substantial interest for various promising applications including human-machine interfaces, biointegrated devices, and personalized medicine. However, it remains a critical challenge to develop e-skins to mimic the human somatosensory system in full working range. Here, we present a multifunctional e-skin system with a heterostructured configuration that couples vinyl-hybrid-silica nanoparticle (VSNP)-modified polyacrylamide (PAM) hydrogel with two-dimensional (2D) MXene through nano-bridging layers of polypyrrole nanowires (PpyNWs) at the interfaces, featuring high toughness and low hysteresis, in tandem with controlled crack generation and distribution. The multidimensional configurations endow the e-skin with an extraordinary working range (2800%), ultrafast responsiveness (90 ms) and resilience (240 ms), good linearity (800%), tunable sensing mechanisms, and excellent reproducibility. In parallel, this e-skin platform is capable of detecting, quantifying, and remotely monitoring stretching motions in multiple dimensions, tactile pressure, proximity sensing, and variations in temperature and light, establishing a promising platform for next-generation smart flexible electronics.

6.
Proc Natl Acad Sci U S A ; 117(25): 13908-13913, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32513713

RESUMEN

The optoelectronic properties of atomically thin transition-metal dichalcogenides are strongly correlated with the presence of defects in the materials, which are not necessarily detrimental for certain applications. For instance, defects can lead to an enhanced photoconduction, a complicated process involving charge generation and recombination in the time domain and carrier transport in the spatial domain. Here, we report the simultaneous spatial and temporal photoconductivity imaging in two types of WS2 monolayers by laser-illuminated microwave impedance microscopy. The diffusion length and carrier lifetime were directly extracted from the spatial profile and temporal relaxation of microwave signals, respectively. Time-resolved experiments indicate that the critical process for photoexcited carriers is the escape of holes from trap states, which prolongs the apparent lifetime of mobile electrons in the conduction band. As a result, counterintuitively, the long-lived photoconductivity signal is higher in chemical-vapor deposited (CVD) samples than exfoliated monolayers due to the presence of traps that inhibits recombination. Our work reveals the intrinsic time and length scales of electrical response to photoexcitation in van der Waals materials, which is essential for their applications in optoelectronic devices.

7.
Adv Mater ; 31(18): e1900861, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30907033

RESUMEN

2D transition metal dichalcogenide (TMD) layered materials are promising for future electronic and optoelectronic applications. The realization of large-area electronics and circuits strongly relies on wafer-scale, selective growth of quality 2D TMDs. Here, a scalable method, namely, metal-guided selective growth (MGSG), is reported. The success of control over the transition-metal-precursor vapor pressure, the first concurrent growth of two dissimilar monolayer TMDs, is demonstrated in conjunction with lateral or vertical TMD heterojunctions at precisely desired locations over the entire wafer in a single chemical vapor deposition (VCD) process. Owing to the location selectivity, MGSG allows the growth of p- and n-type TMDs with spatial homogeneity and uniform electrical performance for circuit applications. As a demonstration, the first bottom-up complementary metal-oxide-semiconductor inverter based on p-type WSe2 and n-type MoSe2 is achieved, which exhibits a high and reproducible voltage gain of 23 with little dependence on position.

8.
ACS Nano ; 11(12): 12817-12823, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29182852

RESUMEN

Two-dimensional (2D) materials are drawing growing attention for next-generation electronics and optoelectronics owing to its atomic thickness and unique physical properties. One of the challenges posed by 2D materials is the large source/drain (S/D) series resistance due to their thinness, which may be resolved by thickening the source and drain regions. Recently explored lateral graphene-MoS21-3 and graphene-WS21,4 heterostructures shed light on resolving the mentioned issues owing to their superior ohmic contact behaviors. However, recently reported field-effect transistors (FETs) based on graphene-TMD heterostructures have only shown n-type characteristics. The lack of p-type transistor limits their applications in complementary metal-oxide semiconductor electronics. In this work, we demonstrate p-type FETs based on graphene-WSe2 lateral heterojunctions grown with the scalable CVD technique. Few-layer WSe2 is overlapped with the multilayer graphene (MLG) at MLG-WSe2 junctions such that the contact resistance is reduced. Importantly, the few-layer WSe2 only forms at the junction region while the channel is still maintained as a WSe2 monolayer for transistor operation. Furthermore, by imposing doping to graphene S/D, 2 orders of magnitude enhancement in Ion/Ioff ratio to ∼108 and the unipolar p-type characteristics are obtained regardless of the work function of the metal in ambient air condition. The MLG is proposed to serve as a 2D version of emerging raised source/drain approach in electronics.

9.
ACS Nano ; 11(9): 9215-9222, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28783311

RESUMEN

Two-dimensional (2D) transition-metal dichalcogenide (TMDC) semiconductors are important for next-generation electronics and optoelectronics. Given the difficulty in growing large single crystals of 2D TMDC materials, understanding the factors affecting the seed formation and orientation becomes an important issue for controlling the growth. Here, we systematically study the growth of molybdenum disulfide (MoS2) monolayer on c-plane sapphire with chemical vapor deposition to discover the factors controlling their orientation. We show that the concentration of precursors, that is, the ratio between sulfur and molybdenum oxide (MoO3), plays a key role in the size and orientation of seeds, subsequently controlling the orientation of MoS2 monolayers. High S/MoO3 ratio is needed in the early stage of growth to form small seeds that can align easily to the substrate lattice structures, while the ratio should be decreased to enlarge the size of the monolayer at the next stage of the lateral growth. Moreover, we show that the seeds are actually crystalline MoS2 layers as revealed by high-resolution transmission electron microscopy. There exist two preferred orientations (0° or 60°) registered on sapphire, confirmed by our density functional theory simulation. This report offers a facile technique to grow highly aligned 2D TMDCs and contributes to knowledge advancement in growth mechanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA