Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(25): e2221956120, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37307491

RESUMEN

Investigating coherent acoustic vibrations in nanostructured materials provides fundamental insights into optomechanical responses and microscopic energy flow. Extensive measurements of vibrational dynamics have been performed for a wide variety of nanoparticles and nanoparticle assemblies. However, virtually all of them show that only the dilation modes are launched after laser excitations, and the acoustic bending and torsional motions, which are commonly observed in photoexcited chemical bonds, are absent. Unambiguous identification and refined characterization of these "missing" modes have been a long-standing issue. In this report, we investigated the acoustic vibrational dynamics of individual Au nanoprisms on free-standing graphene substrates using an ultrafast high-sensitivity dark-field imaging approach in four-dimensional transmission electron microscopy. Following optical excitations, we observed low-frequency multiple-mode oscillations and higher superposition amplitudes at nanoprism corners and edges on the subnanoparticle level. In combination with finite-element simulations, we determined that these vibrational modes correspond to out-of-plane bending and torsional motions, superimposed by an overall tilting effect of the nanoprisms. The launch and relaxation processes of these modes are highly pertinent to substrate effects and nanoparticle geometries. These findings contribute to the fundamental understanding about acoustic dynamics of individual nanostructures and their interaction with substrates.

2.
Nat Nanotechnol ; 18(2): 145-152, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36509924

RESUMEN

An understanding of nanoscale energy transport and acoustic response is important for applications of nanomaterials but hinges on a complete characterization of their structural dynamics. The precise determination of the structural dynamics within nanoparticles, however, is still challenging and requires high spatiotemporal resolution and detection sensitivity. Here we present a centred dark-field imaging approach based on ultrafast transmission electron microscopy that is capable of directly mapping the picosecond-scale evolution of intrananoparticle vibration with a spatial resolution down to 3 nm. Using this approach, we investigated the photo-induced vibrational dynamics in individual gold heterodimers composed of a nanoprism and a nanosphere. We observed not only the retardation of in-plane vibrations in the nanoprisms, which we attribute to thermal and vibrational energy transferred from adjacent nanospheres mediated by surfactants, but also the existence of a complex multimodal oscillation and its spatial variation within individual nanoprisms. This work represents an advance in real-space mapping of vibrational dynamics on the subnanoparticle level with a high detection sensitivity.

3.
Micromachines (Basel) ; 13(10)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36296005

RESUMEN

Oil-water separation technology has potential applications in wastewater treatment, petroleum refining and edible oil processing. As the ultimate means in oil-water treatment, electrostatic coalescence technology has been widely used in oil fields and refineries. However, the technology has many problems, such as complex processes, electrode corrosion, and the inability to treat high-water-cut crude oil emulsions. Here, we propose a contactless method of oil-water separation by corona discharge. With corona discharge of a needle-plate electrode configuration, the oil droplet diffuses to the ITO glass surface and the water droplet oscillates at the edge of the PET film. Here, such droplet behaviors are described in detail. Based on the motion behavior of the oil and water droplet, we designed an efficient oil-water separation device. After the oil-water mixture passes through the device, the oil content in the oil region can reach 99.25% with a voltage of 8 kV. In addition, the separation speed of the oil-water mixture can also be adjusted by varying the corona discharge voltage. This paper presents a simple and innovative method for oil-water separation.

4.
Sci Rep ; 12(1): 14881, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050452

RESUMEN

We present a flip-flop dual-component model to treat quantum dynamics of relativistic particles with a rest mass and investigate the matter waves' phase and amplitude modulations due to Heisenberg's uncertainty principle. Their matter waves behave like a traveling Gaussian-shaped wave packet accompanied by a guiding pilot wave, and the phase modulations result in mass oscillations. These effects are more prominent for light-weighted elementary particles, such as neutrinos and electrons. This mechanism is solely due to the uncertainty principle and has nothing to do with the flavor-mixing of neutrinos. Simulations using neutrinos and electrons are presented, which indicate an oscillation period on the order of ps. This study primarily focuses on the predicted mass oscillations induced by the uncertainty principle. A slit-type interference experiment using neutrinos and electrons from reactors is proposed to test the predicted behaviors.

5.
Sci Rep ; 12(1): 10, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34997026

RESUMEN

To study the combustion process of fuel in the microwave plasma torch, we designed a butane microwave plasma device exploiting a tungsten rod as an electrode. Through analysis of the image record by high-speed camera, we found that the discharge of butane microwave plasma torch is a cyclic process at atmospheric pressure at a frequency  of around 100 Hz. During the discharge, the active particles continuously diffuse from the electrode to the outside like the bloom of the flower. Then, the variation of plasma torch of jet height and temperature with microwave power is obtained. In addition, we studied the effects of different butane flow rates on the plasma torch. The results illustrate that excessive butane will lead to carbon deposition on the electrode. All in all, this work provides a new understanding of the combustion of the microwave plasma torch, which is conducive to the further development of microwave plasma in the fields of waste gas treatment, fuel combustion, and plasma engine.

6.
Langmuir ; 37(50): 14697-14702, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34894688

RESUMEN

Droplet manipulation is the cornerstone of many modern technologies. It is still challenging to drive the droplet motion on nonslippery surfaces flexibly. We present a droplet manipulation method on nonslippery polymer surfaces based on the corona discharge. With the corona discharge of two-needle electrodes with opposite polarities, the droplet's charge polarity can be switched, which results in the directionally droplet transport on a charged polymer surface with the oscillation. Here, such droplet behaviors are presented in detail. Dependence of the motion on the critical distance and driving distance between the droplet and the needle electrode is revealed. The driving mechanism is verified by experiments and simulations. This work enriches the droplet manipulation techniques on nonslippery surfaces for various applications, such as combinatory chemistry, biochemical, and medical detection.


Asunto(s)
Polímeros , Electrodos , Movimiento (Física)
7.
Nano Lett ; 21(13): 5842-5849, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34153185

RESUMEN

Hybrids of graphene and metal plasmonic nanostructures are promising building blocks for applications in optoelectronics, surface-enhanced scattering, biosensing, and quantum information. An understanding of the coupling mechanism in these hybrid systems is of vital importance to its applications. Previous efforts in this field mainly focused on spectroscopic studies of strong coupling within the hybrids with no spatial resolution. Here we report direct imaging of the local plasmonic coupling between single Au nanocapsules and graphene step edges at the nanometer scale by photon-induced near-field electron microscopy in an ultrafast electron microscope for the first time. The proximity of a step in the graphene to the nanocapsule causes asymmetric surface charge density at the ends of the nanocapsules. Computational electromagnetic simulations confirm the experimental observations. The results reported here indicate that this hybrid system could be used to manipulate the localized electromagnetic field on the nanoscale, enabling promising future plasmonic devices.


Asunto(s)
Grafito , Nanoestructuras , Microscopía de Fuerza Atómica , Microscopía Electrónica , Nanotecnología
8.
ACS Omega ; 6(23): 15442-15447, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34151122

RESUMEN

Defects can affect all aspects of materials by altering their electronic structures and mediating the carrier dynamics. However, in the past decades, most research efforts were restricted to nonstoichiometric defects, while the effects of high-density defects on the carrier dynamics of semiconductors remained elusive. In this work, using transient absorption spectroscopy, we have observed for the first time a hybrid carrier relaxation dynamics with the feature of a Poisson-like retard shoulder in a time-domain profile in highly defective ZnO crystals. This novel behavior has been attributed to the spectral diffusion within continuum defect states, which is further confirmed by a proposed diffusion (in energy space) controlled carrier dynamic model. Our results thus reveal an alternative energy decay channel in highly defective crystals and may provide a new route for defect engineering.

9.
ACS Nano ; 15(4): 6801-6810, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33733750

RESUMEN

Understanding and controlling the dynamics of active Brownian objects far from equilibrium are fundamentally important for emerging technologies such as artificial micro/nanomotors for drug deliveries and noninvasive microsurgery. However, direct observation and control of unidirectional propulsion of individual nanoscale objects are technically challenging due to the required spatiotemporal resolution. Here, we report in situ visualization and manipulation of unidirectional superfast ballistic dynamics of a single-photon-activated gold nanoparticle (NP) along the liquid-gas interface by four-dimensional electron microscopy (4D EM) at nanometer and nanosecond scales. We observed that, upon repetitive femtosecond laser excitation, the NP at the liquid-gas interface exhibits a continuously superfast unidirectional translation with a linear dependence of its root mean squared velocity (νrms) on either the laser fluence or repetition rate. Under a single femtosecond pulse excitation, the NP exhibits a superfast ballistic translation at the nanosecond time scale. Combined experiment and physical modeling reveals that the superfast unidirectional, ballistic translation is driven by unidirectional random impulsive forces arising from the nanobubbles (NBs) induced by enhanced laser heating as a result of plasmonic excitation, which is controllable by tuning the laser characteristics. This directional plasmonic NB-propulsion mechanism sheds light on the design of light-controllable artificially intelligent micro/nanomotor systems.

10.
Micromachines (Basel) ; 11(2)2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32050671

RESUMEN

In this paper, a phenomenon of generation and transport of droplets is proposed, which is based on the dielectric liquid electroconvection induced by corona discharge. We placed the dielectric fluid on a conductive/nonconductive substrate, and then it broke apart to become many small droplets that move along the conductive microchannel. The behaviors of dielectric droplets were experimentally observed on different conductive microchannels in details. Spreading speeds and sizes of dielectric droplets were analyzed at different driving voltages and conductive microchannels. This work highlights a simple approach to produce and manipulate dielectric droplets along microchannels.

11.
Proc Natl Acad Sci U S A ; 116(44): 22014-22019, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31611413

RESUMEN

T cells can be controllably stimulated through antigen-specific or nonspecific protocols. Accompanying functional hallmarks of T cell activation can include cytoskeletal reorganization, cell size increase, and cytokine secretion. Photon-induced near-field electron microscopy (PINEM) is used to image and quantify evanescent electric fields at the surface of T cells as a function of various stimulation conditions. While PINEM signal strength scales with multiple of the biophysical changes associated with T cell functional activation, it mostly strongly correlates with antigen-engagement of the T cell receptors, even under conditions that do not lead to functional T cell activation. PINEM image analysis suggests that a stimulation-induced reorganization of T cell surface structure, especially over length scales of a few hundred nanometers, is the dominant contributor to these PINEM signal changes. These experiments reveal that PINEM can provide a sensitive label-free probe of nanoscale cellular surface structures.


Asunto(s)
Activación de Linfocitos , Linfocitos T/ultraestructura , Humanos , Células Jurkat , Microscopía Electrónica/métodos , Propiedades de Superficie
12.
Nanoscale Res Lett ; 14(1): 18, 2019 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-30635791

RESUMEN

CdS/CdSe quantum dot-sensitized solar cells (QDSSCs) were fabricated on two types of TiO2 photoanodes, namely nanosheets (NSs) and nanoparticles. The TiO2 NSs with high (001)-exposed facets were prepared via a hydrothermal method, while the TiO2 nanoparticles used the commercial Degussa P-25. It was found that the pore size, specific surface area, porosity, and electron transport properties of TiO2 NSs were generally superior to those of P-25. As a result, the TiO2 NS-based CdS/CdSe QDSSC has exhibited a power conversion efficiency of 4.42%, which corresponds to a 54% improvement in comparison with the P-25-based reference cell. This study provides an effective photoanode design using nanostructure approach to improve the performance of TiO2-based QDSSCs.

13.
Sci Rep ; 8(1): 17813, 2018 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-30546037

RESUMEN

Electric corona discharge in a multi-phase system results in complex electro-hydrodynamic phenomena. We observed unconventional shock wave propagation on an oil thin film sprayed over a polymer-coated conductor. A hair-thin single shock wave arose when the high voltage bias of an overhung steel needle was abruptly removed. However, such solitary waves possess neither interference nor reflection properties commonly known for ordinary waves, and also differ from the solitons in a canal or an optical fiber. We also observed time-retarded movement for dispersed oil droplets at various distances from the epicenter which have no physical contact, as if a wave propagating on a continuous medium. Such a causality phenomenon for noncontact droplets to move resembling wave propagation could not be possibly described by the conventional surface wave equation. Our systematic studies reveal a mechanism involving oil surface charges driven by reminiscent electric fields in the air when the needle bias is suddenly removed.

14.
Nanoscale ; 10(22): 10343-10350, 2018 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-29737349

RESUMEN

A better understanding of charge carrier dynamics in graphene is key to improvement of its electronic performance. Here, we present direct space-time visualization of carrier relaxation and diffusion in monolayer graphene using time-resolved scanning electron microscopy techniques. We observed striking fluence-dependent dynamic images, changing from a Gaussian shape to a novel crater-shaped pattern with increasing laser fluence. Such direct observation of dynamic changes in spatial charge distribution is not readily available from the conventional spectroscopic approaches, which reflect essentially overall effective carrier temperature and density. According to our analysis, for this crater-shaped carrier density to occur in aggregated electron-hole pairs in the high fluence regime there exists an unconventional Auger-assisted carrier recombination process to provide effective relaxation channels, most likely involving emission of optical phonons and plasmons, which is dynamically accessible due to a strong temporal overlap among them. The presented model allows us to successfully account for these unexpected phenomena and to quantitatively analyze the observed spatiotemporal behavior.

15.
Proc Natl Acad Sci U S A ; 114(49): 12876-12881, 2017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-29158393

RESUMEN

Eutectic-related reaction is a special chemical/physical reaction involving multiple phases, solid and liquid. Visualization of a phase reaction of composite nanomaterials with high spatial and temporal resolution provides a key understanding of alloy growth with important industrial applications. However, it has been a rather challenging task. Here, we report the direct imaging and control of the phase reaction dynamics of a single, as-grown free-standing gallium arsenide nanowire encapped with a gold nanoparticle, free from environmental confinement or disturbance, using four-dimensional (4D) electron microscopy. The nondestructive preparation of as-grown free-standing nanowires without supporting films allows us to study their anisotropic properties in their native environment with better statistical character. A laser heating pulse initiates the eutectic-related reaction at a temperature much lower than the melting points of the composite materials, followed by a precisely time-delayed electron pulse to visualize the irreversible transient states of nucleation, growth, and solidification of the complex. Combined with theoretical modeling, useful thermodynamic parameters of the newly formed alloy phases and their crystal structures could be determined. This technique of dynamical control aided by 4D imaging of phase reaction processes on the nanometer-ultrafast time scale opens new venues for engineering various reactions in a wide variety of other systems.

16.
Sci Adv ; 3(8): e1701160, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28875170

RESUMEN

Dynamics of active or propulsive Brownian particles in nonequilibrium status have recently attracted great interest in many fields including artificial micro/nanoscopic motors and biological entities. Understanding of their dynamics can provide insight into the statistical properties of physical and biological systems far from equilibrium. We report the translational dynamics of photon-activated gold nanoparticles (NPs) in water imaged by liquid-cell four-dimensional electron microscopy (4D-EM) with high spatiotemporal resolution. Under excitation of femtosecond laser pulses, we observed that those NPs exhibit superfast diffusive translation with a diffusion constant four to five orders of magnitude greater than that in the absence of laser excitation. The measured diffusion constant follows a power-law dependence on the laser fluence and a linear increase with the laser repetition rate, respectively. This superfast diffusion of the NPs is induced by a strong random driving force arising from the photoinduced steam nanobubbles (NBs) near the NP surface. In contrast, the NPs exhibit a superfast ballistic translation at a short time scale down to nanoseconds. Combining with a physical model simulation, this study reveals a photoinduced NB propulsion mechanism for propulsive motion, providing physical insights into better design of light-activated artificial micro/nanomotors. The liquid-cell 4D-EM also provides the potential of studying other numerical dynamical behaviors in their native environments.

17.
Angew Chem Int Ed Engl ; 56(38): 11498-11501, 2017 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-28736869

RESUMEN

Photon-induced near-field electron microscopy (PINEM) is a technique to produce and then image evanescent electromagnetic fields on the surfaces of nanostructures. Most previous applications of PINEM have imaged surface plasmon-polariton waves on conducting nanomaterials. Here, the application of PINEM on whole human cancer cells and membrane vesicles isolated from them is reported. We show that photons induce time-, orientation-, and polarization-dependent evanescent fields on the surfaces of A431 cancer cells and isolated membrane vesicles. Furthermore, the addition of a ligand to the major surface receptor on these cells and vesicles (epidermal growth factor receptor, EGFR) reduces the intensity of these fields in both preparations. We propose that in the absence of plasmon waves in biological samples, these evanescent fields reflect the changes in EGFR kinase domain polarization upon ligand binding.


Asunto(s)
Células Eucariotas/citología , Fotones , Línea Celular Tumoral , Proliferación Celular , Humanos , Microscopía Electrónica , Tamaño de la Partícula , Propiedades de Superficie
18.
Science ; 355(6324): 494-498, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-28154074

RESUMEN

In real time and space, four-dimensional electron microscopy (4D EM) has enabled observation of transient structures and morphologies of inorganic and organic materials. We have extended 4D EM to include liquid cells without the time resolution being limited by the response of the detector. Our approach permits the imaging of the motion and morphological dynamics of a single, same particle on nanometer and ultrashort time scales. As a first application, we studied the rotational dynamics of gold nanoparticles in aqueous solution. A full transition from the conventional diffusive rotation to superdiffusive rotation and further to a ballistic rotation was observed with increasing asymmetry of the nanoparticle morphology. We explored the underlying physics both experimentally and theoretically according to the morphological asymmetry of the nanoparticles.

19.
Nat Commun ; 6: 8639, 2015 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-26478194

RESUMEN

The phase transition of crystalline ordering is a general phenomenon, but its evolution in space and time requires microscopic probes for visualization. Here we report direct imaging of the transformation of amorphous titanium dioxide nanofilm, from the liquid state, passing through the nucleation step and finally to the ordered crystal phase. Single-pulse transient diffraction profiles at different times provide the structural transformation and the specific degree of crystallinity (η) in the evolution process. It is found that the temporal behaviour of η exhibits unique 'two-step' dynamics, with a robust 'plateau' that extends over a microsecond; the rate constants vary by two orders of magnitude. Such behaviour reflects the presence of intermediate structure(s) that are the precursor of the ordered crystal state. Theoretically, we extend the well-known Johnson-Mehl-Avrami-Kolmogorov equation, which describes the isothermal process with a stretched-exponential function, but here over the range of times covering the melt-to-crystal transformation.

20.
Science ; 347(6218): 164-7, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25574020

RESUMEN

The dynamics of charge transfer at interfaces are fundamental to the understanding of many processes, including light conversion to chemical energy. Here, we report imaging of charge carrier excitation, transport, and recombination in a silicon p-n junction, where the interface is well defined on the nanoscale. The recorded images elucidate the spatiotemporal behavior of carrier density after optical excitation. We show that carrier separation in the p-n junction extends far beyond the depletion layer, contrary to the expected results from the widely accepted drift-diffusion model, and that localization of carrier density across the junction takes place for up to tens of nanoseconds, depending on the laser fluence. The observations reveal a ballistic-type motion, and we provide a model that accounts for the spatiotemporal density localization across the junction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...