Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Int J Biol Macromol ; 270(Pt 2): 132191, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38729466

RESUMEN

Obtaining lignin-based graphite-like microcrystallites at a relatively low carbonization temperature is still very challenging. In this work, we report a new method based on condensed structures, for regulating graphite-like microcrystalline structures via the incorporation of 4,4'-diphenylmethane diisocyanate (MDI) into the main structure of lignin. The effects of MDI on the thermal properties of lignin and the graphite-like microcrystalline structure of lignin-based ultrafine carbon fibers were extensively studied and investigated. The incorporation of MDI decreased the thermal stability of lignin, increased the carbon yield and enhanced the formation of graphite-like microcrystallites, which are beneficial for reducing energy consumption during the preparation of lignin-based carbon fibers. The modified lignin-based ultrafine carbon fibers (M-LCFs) demonstrated satisfactory electrochemical performance, including high specific capacitance, low charge transfer resistance, and good cycle performance. The M-LCFs-3/2 electrode had a specific capacitance of 241.3 F g-1 at a current density of 0.5 A g-1, and a residual ratio of 90.2 % after 2000 charge and discharge cycles. This study provides a new approach to control the graphite-like microcrystalline structure and electrochemical performance while also optimizing the temperature.

2.
Food Funct ; 15(10): 5364-5381, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38639049

RESUMEN

Invasive candidiasis may be caused by Candida albicans (C. albicans) colonization of the intestinal tract. Preventing intestinal damage caused by Candida albicans infection and protecting intestinal barrier function have become a critical issue. Integrated analyses of the microbiome with metabolome revealed a remarkable shift of the gut microbiota and tryptophan metabolites, kynurenic acid (KynA), and indolacrylic acid (IA) in mice infected with C. albicans. The transcriptome sequencing indicated that differentially expressed genes were significantly associated with innate immune responses and inflammatory responses. The results of this study suggest that KynA and IA (KI) can alleviate intestinal damage caused by Candida albicans infection in mice by reducing intestinal permeability, increasing intestinal firmness, alleviating intestinal inflammation, and reducing the secretion of interleukin-22 (IL-22) in the 3 groups of colon innate lymphoid cells (ILC3). We performed a fecal microbiota transplantation (FMT) experiment and found that the intestinal barrier function, inflammation, and IL-22 secretion of ILC3 in the colon lamina propria of the recipient mice subjected to C. albicans infection and KI treatment were consistent with the trends of the donor mice. Our results suggest that tryptophan metabolites may directly regulate colon lamina ILC3 to promote intestinal resistance to C. albicans invasion, or indirectly regulate the ILC3 secretion of IL-22 to play a protective role in the intestinal barrier by affecting intestinal microorganisms, which may become a potential target for alleviating intestine borne C. albicans infection.


Asunto(s)
Candida albicans , Candidiasis , Colon , Microbioma Gastrointestinal , Interleucina-22 , Interleucinas , Mucosa Intestinal , Triptófano , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Triptófano/metabolismo , Ratones , Interleucinas/metabolismo , Candidiasis/inmunología , Candidiasis/microbiología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/inmunología , Colon/microbiología , Colon/inmunología , Colon/metabolismo , Masculino , Linfocitos/inmunología , Linfocitos/metabolismo , Ratones Endogámicos C57BL , Inmunidad Innata , Trasplante de Microbiota Fecal
3.
Inorg Chem ; 63(14): 6396-6407, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38528328

RESUMEN

Indium phosphide (InP) quantum dots (QDs) have become the most recognized prospect to be less-toxic surrogates for Cd-based optoelectronic systems. Due to the particularly dangling bonds (DBs) and the undesirable oxides, the photoluminescence performance and stability of InP QDs remain to be improved. Previous investigations largely focus on eliminating P-DBs and resultant surface oxidation states; however, little attention has been paid to the adverse effects of the surface In-DBs on InP QDs. This work demonstrates a facile one-step surface peeling and passivation treatment method for both In- and P-DBs for InP QDs. Meanwhile, the surface treatment may also effectively support the encapsulation of the ZnSe shell. Finally, the generated InP/ZnSe QDs display a narrower full width at half-maximum (fwhm) of ∼48 nm, higher photoluminescence quantum yields (PLQYs) of ∼70%, and superior stability. This work enlarges the surface chemistry engineering consideration of InP QDs and considerably promotes the development of efficient and stable optoelectronic devices.

5.
Chem Commun (Camb) ; 60(26): 3575-3578, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38470032

RESUMEN

ZnO quantum dots (QDs) supported on porous nitrogen-doped carbon (ZnOQDs/P-NC) exhibited excellent electrochemical performance for the electroreduction of CO2 to CO with a faradaic efficiency of 95.3% and a current density of 21.6 mA cm-2 at -2.2 V vs. Ag/Ag+.

6.
J Phys Chem Lett ; 15(12): 3285-3293, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38489757

RESUMEN

The development of indium phosphide (InP)-based quantum dots (QDs) with a near-infrared (NIR) emission area still lags behind the visible wavelength region and remains problematic. This study describes a one-step in situ pseudohalogen ammonium salt-assisted approach to generate NIR-emitted InP-based QDs with high photoluminescence quantum yields (PLQYs). The coexistence of NH4+ and PF6- ions from NH4PF6 may in situ synchronously etch and passivate the surface oxides and impede the creation of traps under the whole growth process of InP QDs. Experimental findings demonstrated that the in situ pseudohalogen ammonium salt-assisted syntheses technique may feature emission at a full width at half-maximum (fwhm) peak as fine as ∼45 nm and broaden the emission range to around ∼780 nm. A two-step approach for ZnS shells was developed to further improve the PLQY of NIR-emitted InP QDs. Furthermore, the constructed high-power intrinsically stretchable NIR color-conversion film employing the InP-based QDs/polymer composites presented excellent luminescence conversion ability and stretchability.

7.
ACS Appl Mater Interfaces ; 16(12): 15121-15132, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38501443

RESUMEN

Acquiring the ideal blend morphology of the active layer to optimize charge separation and collection is a constant goal of polymer solar cells (PSCs). In this paper, the ternary strategy and the sequential deposition process were combined to make sufficient use of the solar spectrum, optimize the energy-level structure, regulate the vertical phase separation morphology, and ultimately enhance the power conversion efficiency (PCE) and stability of the PSCs. Specifically, the donor and acceptor illustrated a gradient-blended distribution in the sequential deposition-processed films, thus resulting in facilitated carrier characteristics in the gradient-blended devices. Consequently, the PSCs based on D18-Cl/Y6:ZY-4Cl have achieved a device efficiency of over 18% with the synergetic improvement of open-circuit voltage (VOC), short-circuit current density (JSC), and fill factor (FF). Therefore, this work reveals a facile approach to fabricating PSCs with improved performance and stability.

8.
BMC Cardiovasc Disord ; 24(1): 86, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310240

RESUMEN

OBJECTIVE: We aimed to explore the heterogeneity of neurons in heart failure with dilated cardiomyopathy (DCM). METHODS: Single-cell RNA sequencing (scRNA-seq) data of patients with DCM and chronic heart failure and healthy samples from GSE183852 dataset were downloaded from NCBI Gene Expression Omnibus, in which neuron data were extracted for investigation. Cell clustering analysis, differential expression analysis, trajectory analysis, and cell communication analysis were performed, and highly expressed genes in neurons from patients were used to construct a protein-protein interaction (PPI) network and validated by GSE120895 dataset. RESULTS: Neurons were divided into six subclusters involved in various biological processes and each subcluster owned its specific cell communication pathways. Neurons were differentiated into two branches along the pseudotime, one of which was differentiated into mature neurons, whereas another tended to be involved in the immune and inflammation response. Genes exhibited branch-specific differential expression patterns. FLNA, ITGA6, ITGA1, and MDK interacted more with other gene-product proteins in the PPI network. The differential expression of FLNA between DCM and control was validated. CONCLUSION: Neurons have significant heterogeneity in heart failure with DCM, and may be involved in the immune and inflammation response to heart failure.


Asunto(s)
Cardiomiopatía Dilatada , Insuficiencia Cardíaca , Humanos , Cardiomiopatía Dilatada/diagnóstico , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Perfilación de la Expresión Génica , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/genética , Inflamación , Análisis de Secuencia de ARN , Neuronas/metabolismo
9.
Immunol Invest ; : 1-12, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329477

RESUMEN

BACKGROUND: Complex pathophysiological the specific mechanism of sepsis on CD4+ T-cell responses is less well understood. IL1 receptor accessory protein (IL1RAP) was found to be involved in activating host immune responses. METHOD: Cecum ligation and puncture (CLP) was utilized to build a mouse sepsis model. The experiment was randomly divided into four groups: Sham, CLP, CLP + shNC, and CLP + shIL1RAP group. RESULTS: qRT-PCR suggested mRNA levels of IL1RAP were decreased when IL1RAP was knocked down with the mRNA levels of IL-1ß, NF-κB, and p38 decreased. Histopathology showed severe pathological damage with alveolar integrity lost, red blood cells in the alveoli, massive inflammatory cell infiltration, and the alveolar wall was thickening in the CLP group. The inflammatory cytokine levels of TNF-α, IL-1ß, and IFN-γ were elevated in CLP mice by ELISA. The counts of CD4+ T cells were decreased in sepsis mice in peripheral blood, spleen, and BALF by flow cytometry. However, the above was blocked down when using shIL1RAP. Western blot suggested sh IL1RAP inhibited IL-1ß, NF-κB, and p38 protein expressions. CONCLUSIONS: We defined IL1RAP as a new target gene through NF-κB/MAPK pathways regulating CD4+ T lymphocyte differentiation mediated the progression of sepsis, which is potentially exploitable for immunotherapy.

10.
Nano Lett ; 24(9): 2912-2920, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38391386

RESUMEN

Nanozymes with peroxidase-like activity have been extensively studied for colorimetric biosensing. However, their catalytic activity and specificity still lag far behind those of natural enzymes, which significantly affects the accuracy and sensitivity of colorimetric biosensing. To address this issue, we design PdSn nanozymes with selectively enhanced peroxidase-like activity, which improves the sensitivity and accuracy of a colorimetric immunoassay. The peroxidase-like activity of PdSn nanozymes is significantly higher than that of Pd nanozymes. Theoretical calculations reveal that the p-d orbital hybridization of Pd and Sn not only results in an upward shift of the d-band center to enhance hydrogen peroxide (H2O2) adsorption but also regulates the O-O bonding strength of H2O2 to achieve selective H2O2 activation. Ultimately, the nanozyme-linked immunosorbent assay has been successfully developed to sensitively and accurately detect the prostate-specific antigen (PSA), achieving a low detection limit of 1.696 pg mL-1. This work demonstrates a promising approach for detecting PSA in a clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , Peróxido de Hidrógeno , Masculino , Humanos , Antígeno Prostático Específico , Inmunoensayo/métodos , Antioxidantes , Peroxidasas , Colorimetría/métodos , Técnicas Biosensibles/métodos
11.
Small ; 20(7): e2303946, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37806767

RESUMEN

The key to increasing the rate of oxygen evolution reaction (OER) lies in accelerated four-electron dynamics, while the key to facilitating the development of supercapacitors lies in the design of electrode materials. This paper synthesized manganese-iron Prussian blue (MnFe-PBA@IF) at room temperature, and hexagonal concave structures w ere prepared using a fast-reducing matrix. Interestingly, MnFe-PBA@IF has an amorphous structure favorable to exposing more active surfaces. According to Gibbs free energy calculations on MnFe-PBA, charge depletion of manganese atoms can greatly enhance the adsorption of electron-rich oxygen-containing groups on the surface. Furthermore, the overpotential in 1 m KOH is 280 mV. Also, it can be used as a supercapacitor with a stable operating voltage range of -0.9-0 V and a specific capacity of 1260 F g-1 . This work provides new insights into the synthesis of OER catalysts for Prussian blue ferromanganese at room temperature. Non-gold-bonded adsorption, highly active metal centers and active surfaces are the underlying reasons for the superior performance of supercapacitors. Therefore, Prussian blue with good energy storage performance and high active surface can be used as multifunctional energy storage and conversion electrodes.

12.
J Hazard Mater ; 465: 133256, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38159515

RESUMEN

n-Valeraldehyde is widely used in organic synthesis field as an important intermediate and feedstock, which makes it a significant class of environmental pollutants. In view of the high poisonous and harmful of n-valeraldehyde to human health and ecological environment, it is important to develop green and sustainable technology to reduce the pollution of n-valeraldehyde. In this work, electrocatalytic n-valeraldehyde oxidation using Zn-Co bimetallic oxides was applied to control n-valeraldehyde contamination and highly valuable octane production. To further improve the performance of Zn-Co bimetallic oxides, atomic level Zn vacancies were created across the Zn-Co bimetallic oxides (dx-ZnCo2O4) by post-etching and oxygen vacancy filling methods. Electrochemical experiments results showed that dx-ZnCo2O4 owned a much higher octane yield (1193.4 µmol g-1 h-1) and octane selectivity (octane/butene ≈10). Theoretical calculations demonstrated that the introduction of atomic level Zn vacancies in Zn-Co bimetallic oxide changed the electronic distribution around O, Co and Zn atoms, resulted in an alteration in n-valeraldehyde adsorption sites from Co to Zn, reduced the formation barrier of key intermediate *C4H9 and facilitated the transfer of n-valeraldehyde to octane. This study provides a new idea for the development of high-performance electrocatalysts for controlling n-valeraldehyde pollution.

13.
Sci Rep ; 13(1): 21614, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062232

RESUMEN

Enteral nutrition (EN) is important for critically ill patients. This study investigated the current situation of EN treatment in SHANGHAI intensive care units (ICUs). We hypothesized that improving EN practice in SHANGHAI may benefit the prognosis of ICU patients. Clinical information on EN use was collected using clinic information forms in 2019. The collected data included the patient's general clinical information, EN prescription status, EN tolerance status, and clinical outcomes. The observation time points were days 1, 3, and 7 after starting EN. A total of 491 patients were included. The proportion of EN intolerance (defined as < 20 kcal/kg/day) decreased, with rates of intolerance of 100%, 82.07%, 70.61%, and 52.23% at 1, 3, 7, and 14 days, respectively. Age, mNutric score, and protein intake < 0.5 g/kg/day on day 7 were risk factors for 28-day mortality.The EN tolerance on day 7 and protein intake > 0.5 g/kg/day on day 3 or day 7 might affect the 28-day mortality. Risk factors with EN tolerance on day 7 by logistic regression showed that the AGI grade on day 1 was a major factor against EN tolerance. The proportion of EN tolerance in SHANGHAI ICU patients was low. Achieving tolerance on day 7 after the start of EN is a protective factor for 28-day survival. Improving EN tolerance and protein intake maybe beneficial for ICU patients.


Asunto(s)
Cuidados Críticos , Nutrición Enteral , Humanos , Nutrición Enteral/efectos adversos , China , Unidades de Cuidados Intensivos , Estado Nutricional , Enfermedad Crítica/terapia
14.
RSC Adv ; 13(49): 34524-34533, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38024974

RESUMEN

In this study, ZnS capped Cu-In-S (ZCIS) quantum dots doped with Mn ions are synthesized by a thermal injection method, with luminescence covering almost the entire visible area. The large Stokes shift effectively inhibits the self-absorption effect under luminescence, and the quantum yield of ZCIS quantum dots increased from 38% to 50% after ZnS capping and further to 69% after doping with Mn. First, red-, yellow-, and blue-emitting quantum dots were synthesized and then, polychromatic ensembles were obtained by mixing the trichromatic quantum dots in a different ratio. Using the home-built inkjet printer, multilayered and multicolor mixed patterns were obtained for information pattern storage and multilayer pattern recognition and reading.

15.
Water Res ; 247: 120693, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37976627

RESUMEN

Two-dimensional materials are widely used in membrane separation, but the loose distribution and severe expansion between graphene oxide (GO) nanosheets limit its application. Here, we introduce a two-dimensional MOF material into the GO membrane to enhance its water permeance and separation performance. The MOF/GO composite membrane was prepared by vacuum filtration. The MOF and GO nanosheets were tightly stacked through the π-π effect, and the shortened transmission path and enhanced pore structure greatly improved the water permeance of the composite membrane. The MOF/GO membrane exhibited a high water permeance of 56.94 L m-2 h-1 bar-1. The rejection rates of methylene blue and was as methyl orange dyes were as high as 99.79% and 99.11%, respectively. At increased dye concentration, the rejection rate of methylene blue was still maintained greater than 99%. Dye rejection after 18 h of continuous operation remains above 90%. This work provides new ideas for improving membrane separation materials. The combination of two-dimensional heterogeneous materials can result in synergistic advantages for the development of composite membranes with high water permeance and high rejection rate.


Asunto(s)
Colorantes , Azul de Metileno , Filtración , Agua
16.
Clin Sci (Lond) ; 137(22): 1753-1769, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-37921121

RESUMEN

Sepsis is known to cause damage to the intestinal mucosa, leading to bacterial translocation, and exacerbation of both local and remote organ impairments. In the present study, fecal samples were collected from both septic and healthy individuals. Analysis through 16s rRNA sequencing of the fecal microbiota revealed that sepsis disrupts the balance of the gut microbial community. Recent research has highlighted the association of lipid metabolism with disease. By analyzing the fecal metabolome, four lipid metabolites that showed significant differences between the two groups were identified: PE (O-16:0/0:0), PE (17:0/0:0), PE (0:0/14:0), and PE (12:0/20:5 (5Z, 8Z, 11Z, 14Z, 17Z)). Notably, the serum levels of PE (0:0/14:0) were higher in the healthy group. Subsequent in vitro and in vivo experiments demonstrated the protective effects of this compound against sepsis-induced intestinal barrier damage. Label-free proteomic analysis showed significant differences in the expression levels of the aryl hydrocarbon receptor (AHR), a protein implicated in sepsis pathogenesis, between the LPS-Caco-2 and LPS-Caco-2 + PE (0:0/14:0) groups. Further analysis, with the help of Discovery Studio 3.5 software and co-immunoprecipitation assays, confirmed the direct interaction between AHR and PE (0:0/14:0). In the cecal ligation and puncture (CLP) model, treatment with PE (0:0 /14:0) was found to up-regulate the expression of tight junction proteins through the AHR/Cytochrome P450, family 1, subfamily A, and polypeptide 1 (CYP1A1) pathway. This highlights the potential therapeutic use of PE (0:0/14:0) in addressing sepsis-induced intestinal barrier damage.


Asunto(s)
Microbioma Gastrointestinal , Sepsis , Humanos , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/farmacología , Células CACO-2 , Microbioma Gastrointestinal/fisiología , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/uso terapéutico , ARN Ribosómico 16S , Lipopolisacáridos/farmacología , Proteómica , Sepsis/metabolismo , Mucosa Intestinal/metabolismo
17.
Nanomaterials (Basel) ; 13(18)2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-37764603

RESUMEN

Cr(VI) compounds are bioaccumulative and highly toxic pollutants, and there is a need for simple and fast detection methods to monitor their trace levels. In this work, we developed a Eu3+ complex-based fluorescence sensor to easily detect Cr(VI) in water droplets. Our sensor consists of a nanofibrous membrane electrospun with a blend of polyvinylidene fluoride (PVDF), silica particles, and Eu3+ complex. Upon modifying the membrane surface with fluoroalkyl chemistry, the sensor displayed superhydrophobicity. When a water droplet with Cr(VI) was placed on such a superhydrophobic fluorescence sensor, the overlapping absorption of Cr(VI) and Eu3+ complex facilitated the inner filter effect, allowing the selective detection of Cr(VI) down to 0.44 µM (i.e., 45.76 µg L-1). We proposed and designed of new inexpensive and fast sensor for the detection of Cr(VI).

18.
Materials (Basel) ; 16(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37444815

RESUMEN

Lanthanide ions are extensively utilized in optoelectronic materials, owing to their narrow emission bandwidth, prolonged lifetime, and elevated fluorescence quantum yield. Inorganic non-metallic materials commonly serve as host matrices for lanthanide complexes, posing noteworthy challenges regarding loading quantity and fluorescence performance stability post-loading. In this investigation, an enhanced Stöber method was employed to synthesize mesoporous hollow silica, and diverse forms of SiO2@Eu(TTA)3phen (S@Eu) were successfully prepared. Transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS) outcomes revealed the effective binding of silica with Eu(TTA)3phen through both physical adsorption and chemical bonding. This includes the formation of Si-O-C bonds between silica and the ligand, as well as Si-O-Eu bonds between silica and europium ions. Fluorescence tests demonstrated that the mesoporous SiO2@Eu(TTA)3phen(MS@Eu) composite exhibited the highest fluorescence intensity among the three structured silica composites, with a notable enhancement of 46.60% compared to the normal SiO2@Eu(TTA)3phen composite. The Brunauer-Emmett-Teller (BET) analysis indicated that the specific surface area plays a crucial role in influencing the fluorescence intensity of SiO2@Eu(TTA)3phen, whereby the prepared mesoporous hollow silica further elevated the fluorescence intensity by 61.49%. Moreover, SiO2@Eu(TTA)3phen demonstrated 11.11% greater cyclic stability, heightened thermal stability, and enhanced alkaline resistance relative to SiO2@Eu(TTA)3phen.

19.
PLoS Pathog ; 19(7): e1011556, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37498977

RESUMEN

Although alveolar macrophages (AMs) play important roles in preventing and eliminating pulmonary infections, little is known about their regulation in healthy animals. Since exposure to LPS often renders cells hyporesponsive to subsequent LPS exposures ("tolerant"), we tested the hypothesis that LPS produced in the intestine reaches the lungs and stimulates AMs, rendering them tolerant. We found that resting AMs were more likely to be tolerant in mice lacking acyloxyacyl hydrolase (AOAH), the host lipase that degrades and inactivates LPS; isolated Aoah-/- AMs were less responsive to LPS stimulation and less phagocytic than were Aoah+/+ AMs. Upon innate stimulation in the airways, Aoah-/- mice had reduced epithelium- and macrophage-derived chemokine/cytokine production. Aoah-/- mice also developed greater and more prolonged loss of body weight and higher bacterial burdens after pulmonary challenge with Pseudomonas aeruginosa than did wildtype mice. We also found that bloodborne or intrarectally-administered LPS desensitized ("tolerized") AMs while antimicrobial drug treatment that reduced intestinal commensal Gram-negative bacterial abundance largely restored the innate responsiveness of Aoah-/- AMs. Confirming the role of LPS stimulation, the absence of TLR4 prevented Aoah-/- AM tolerance. We conclude that commensal LPSs may stimulate and desensitize (tolerize) alveolar macrophages in a TLR4-dependent manner and compromise pulmonary immunity. By inactivating LPS in the intestine, AOAH promotes antibacterial host defenses in the lung.


Asunto(s)
Hidrolasas de Éster Carboxílico , Macrófagos Alveolares , Animales , Ratones , Lipopolisacáridos/toxicidad , Pulmón , Macrófagos Alveolares/inmunología , Receptor Toll-Like 4 , Hidrolasas de Éster Carboxílico/metabolismo
20.
Molecules ; 28(13)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37446887

RESUMEN

Folic acid (FA) has shown great potential in the fields of targeted drug delivery and disease diagnosis due to its highly tumor-targeting nature, biocompatibility, and low cost. However, FA is generally introduced in targeted drug delivery systems through macromolecular linkage via complex synthetic processes, resulting in lower yields and high costs. In this work, we report a general protocol for synthesizing thiolated folate derivatives. The small molecule thiolated folate (TFa) was first synthesized with a purity higher than 98.20%. First, S-S-containing diol was synthesized with a purity higher than 99.44 through a newly developed green oxidation protocol, which was carried out in water with no catalyst. Then, folic acid was modified using the diol through esterification, and TFa was finally synthesized by breaking the disulfide bond. Further, the synthesized TFa was utilized to modify silver nanoparticles. The results showed that TFa could be easily bonded to metal particles. The protocol could be extended to the synthesis of a series of thiolated derivatives of folate, such as mercaptohexyl folate, mercaptoundecyl folate, etc., which would greatly benefit the biological applications of FA.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Neoplasias , Humanos , Ácido Fólico/química , Plata , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...