Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Transl Med ; 21(1): 89, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36747238

RESUMEN

BACKGROUND: Albumin is the most abundant protein in serum and serves as a transporter of free fatty acids (FFA) in blood vessels. In type 2 diabetes mellitus (T2DM) patients, the reduced serum albumin level is a risk factor for T2DM development and progression, although this conclusion is controversial. Moreover, there is no study on the effects and mechanisms of albumin administration to relieve T2DM. We examined whether the administration of young and undamaged recombinant albumin can alleviate T2DM in mice. METHODS: The serum albumin levels and metabolic phenotypes including fasting blood glucose, glucose tolerance tests, and glucose-stimulated insulin secretion were studied in db/db mice or diet-induced obesity mice treated with saline or young, undamaged, and ultrapure rMSA. Apoptosis assays were performed at tissue and cell levels to determine the function of rMSA on islet ß cell protection. Metabolic flux and glucose uptake assays were employed to investigate metabolic changes in saline-treated or rMSA-treated mouse hepatocytes and compared their sensitivity to insulin treatments. RESULTS: In this study, treatment of T2DM mice with young, undamaged, and ultrapure recombinant mouse serum albumin (rMSA) increased their serum albumin levels, which resulted in a reversal of the disease including reduced fasting blood glucose levels, improved glucose tolerance, increased glucose-stimulated insulin secretion, and alleviated islet atrophy. At the cellular level, rMSA improved glucose uptake and glycolysis in hepatocytes. Mechanistically, rMSA reduced the binding between CAV1 and EGFR to increase EGFR activation leading to PI3K-AKT activation. Furthermore, rMSA extracellularly reduced the rate of fatty acid uptake by islet ß-cells, which relieved the accumulation of intracellular ceramide, endoplasmic reticulum stress, and apoptosis. This study provided the first clear demonstration that injections of rMSA can alleviate T2DM in mice. CONCLUSION: Our study demonstrates that increasing serum albumin levels can promote glucose homeostasis and protect islet ß cells, which alleviates T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Ratones , Animales , Glucemia/metabolismo , Insulina , Fosfatidilinositol 3-Quinasas/metabolismo , Glucosa/metabolismo , Ratones Obesos , Glucólisis , Albúmina Sérica/metabolismo , Receptores ErbB/metabolismo , Resistencia a la Insulina/fisiología
2.
Biomolecules ; 11(8)2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34439857

RESUMEN

Improvement of longevity is an eternal dream of human beings. The accumulation of protein damages is considered as a major cause of aging. Here, we report that the injection of exogenous recombinant mouse serum albumin (rMSA) reduced the total damages of serum albumin in C57BL/6N mice, with higher level of free-thiols, lower levels of carbonyls and advanced glycation end-products as well as homocysteines in rMSA-treated mice. The healthspan and lifespan of C57BL/6N mice were significantly improved by rMSA. The grip strength of rMSA-treated female and male mice increased by 29.6% and 17.4%, respectively. Meanwhile, the percentage of successful escape increased 23.0% in rMSA-treated male mice using the Barnes Maze test. Moreover, the median lifespan extensions were 17.6% for female and 20.3% for male, respectively. The rMSA used in this study is young and almost undamaged. We define the concept "young and undamaged" to any protein without any unnecessary modifications by four parameters: intact free thiol (if any), no carbonylation, no advanced glycation end-product, and no homocysteinylation. Here, "young and undamaged" exogenous rMSA used in the present study is much younger and less damaged than the endogenous serum albumin purified from young mice at 1.5 months of age. We predict that undamaged proteins altogether can further improve the healthspan and lifespan of mice.


Asunto(s)
Envejecimiento/efectos de los fármacos , Envejecimiento/fisiología , Longevidad/efectos de los fármacos , Longevidad/fisiología , Albúmina Sérica/administración & dosificación , Factores de Edad , Animales , Femenino , Fuerza de la Mano/fisiología , Inyecciones Intravenosas , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes/administración & dosificación
3.
Front Oncol ; 11: 709077, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34327145

RESUMEN

Skin cutaneous melanoma (SKCM) is a chronically malignant tumor with a high mortality rate. Pyroptosis, a kind of pro-inflammatory programmed cell death, has been linked to cancer in recent studies. However, the value of pyroptosis in the diagnosis and prognosis of SKCM is not clear. In this study, it was discovered that 20 pyroptosis-related genes (PRGs) differed in expression between SKCM and normal tissues, which were related to diagnosis and prognosis. Firstly, based on these genes, nine machine-learning algorithms were shown to perform well in constructing diagnostic classifiers, including K-Nearest Neighbor (KNN), logistic regression, Support Vector Machine (SVM), Artificial Neural Network (ANN), decision tree, random forest, XGBoost, LightGBM, and CatBoost. Secondly, the least absolute shrinkage and selection operator (LASSO) Cox regression analysis was applied and the prognostic model was constructed based on 9 PRGs. Subgroups in low and high risks determined by the prognostic model were shown to have different survival. Thirdly, functional enrichment analyses were performed by applying the gene set enrichment analysis (GSEA), and results suggested that the risk was related to immune response. In conclusion, the expression signatures of pyroptosis-related genes are effective and robust in the diagnosis and prognosis of SKCM, which is related to immunity.

4.
Curr Eye Res ; 45(4): 440-449, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31526284

RESUMEN

Purpose: To measure changes in visual performances and optical quality in myopic children during the first month of wearing orthokeratology lens, and to reveal the association between those two.Methods: Thirty-five myopic children participated in this study. Visual performances were evaluated with visual acuity and shape discrimination threshold (SDT) for radial frequency patterns. Placido disc-based corneal topography for central 4 mm and 6 mm zones was collected and decomposed by Fourier analysis into the spherical, asymmetric, and regular astigmatic components. Root-mean-square of third-order, fourth-order, and total higher-order aberrations (HOA) were extracted for the 4 mm and 6 mm zones. All examinations were conducted at baseline, 1-week, and 1-month after lens dispensing. The changing trends over time and association between SDT and optical quality were analysed with linear-mixed model.Results: All subjects' uncorrected visual acuity improved to 0.1 logMAR or better at 1-week and 1-month lens wear (P < .01). SDT did not change significantly from the baseline at 1-week and 1-month after lens wear (P > .05). For the two zones with diameters of 4 mm and 6 mm, the spherical component decreased significantly at 1-week (P < .01) and remained stable thereafter (P < .01); the asymmetric component increased significantly at 1-week (P < .01) and remained high at 1-month (P < .01); and the regular astigmatism did not show any significant change throughout (P > .05). At the two zones with diameters of 4 mm and 6 mm, the third-order, fourth-order, and total HOA increased significantly over time (P < .05). Change of SDT did not correlate with impairments in optical quality (P > .05 for all parameters).Conclusions: While corneal optical quality decreased steadily during the first month following lens wearing, the visual acuity and shape discrimination sensitivity assessed by SDT remained very satisfactory.


Asunto(s)
Astigmatismo/terapia , Lentes de Contacto , Miopía/terapia , Óptica y Fotónica/normas , Procedimientos de Ortoqueratología/métodos , Refracción Ocular/fisiología , Agudeza Visual , Adolescente , Astigmatismo/fisiopatología , Niño , Córnea/diagnóstico por imagen , Topografía de la Córnea , Femenino , Estudios de Seguimiento , Humanos , Masculino , Miopía/fisiopatología , Estudios Prospectivos
5.
Cell Death Dis ; 10(3): 191, 2019 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-30804329

RESUMEN

Chemokine receptors have been documented to exert critical functions in melanoma progression. However, current drugs targeting these receptors have limited efficacy in clinical applications, suggesting the urgency to further explore the roles of chemokine receptors in melanoma. Here we found that C-X-C chemokine receptor 7 (CXCR7) was the most highly expressed chemokine receptor in murine melanoma cell lines. In addition, the expression level of CXCR7 was positively correlated with melanoma progression in the clinical samples. High CXCR7 expression was associated with shorter overall survival in melanoma patients. Increased expression of CXCR7 augmented melanoma proliferation in vitro and tumor growth in vivo, whereas knockout of CXCR7 exhibited significant inhibitory effects. Moreover, our data elucidated that CXCR7 activated Src kinase phosphorylation in a ß-arrestin2-dependent manner. The administration of the Src kinase inhibitor PP1 or siRNA specific for ß-arrestin2 abolished CXCR7-promoted cell proliferation. Importantly, CXCR7 also regulated melanoma angiogenesis and the secretion of vascular endothelial growth factor (VEGF). Subsequent investigations revealed a novel event that the activation of the CXCR7-Src axis stimulated the phosphorylation of eukaryotic translation initiation factor 4E (eIF4E) to accelerate the translation of hypoxia-inducible factor 1α (HIF-1α), which enhanced the secretion of VEGF from melanoma cells. Collectively, our results illuminate the crucial roles of CXCR7 in melanoma tumorigenesis, and indicate the potential of targeting CXCR7 as new therapeutic strategies for melanoma treatment.


Asunto(s)
Melanoma/metabolismo , Receptores CXCR/metabolismo , Transducción de Señal , Familia-src Quinasas/metabolismo , Células A549 , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Transformación Celular Neoplásica , Niño , Preescolar , Factor 4E Eucariótico de Iniciación/metabolismo , Femenino , Células HEK293 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lactante , Masculino , Melanoma/genética , Melanoma/mortalidad , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Persona de Mediana Edad , Neovascularización Patológica/metabolismo , Fosforilación , Receptores CXCR/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Análisis de Matrices Tisulares , Factor A de Crecimiento Endotelial Vascular/metabolismo , Adulto Joven , Arrestina beta 2/metabolismo , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/genética
6.
Int J Nanomedicine ; 12: 3899-3911, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28579776

RESUMEN

The extent of resection is a significant prognostic factor in glioma patients. However, the maximum safe resection level is difficult to determine due to the inherent infiltrative character of tumors. Recently, fluorescence-guided surgery has emerged as a new technique that allows safe resection of glioma. In this study, we constructed a new kind of quantum dot (QD)-labeled aptamer (QD-Apt) nanoprobe by conjugating aptamer 32 (A32) to the QDs surface, which can specially bind to the tumors. A32 is a single-stranded DNA capable of binding to the epidermal growth factor receptor variant III (EGFRvIII) specially distributed on the surface of glioma cells. To detect the expression of EGFRvIII in human brain tissues, 120 specimens, including 110 glioma tissues and 10 normal brain tissues, were examined by immunohistochemistry, and the results showed that the rate of positive expression of EGFRvIII in the glioma tissues was 41.82%, and 0.00% in normal brain tissues. Besides, the physiochemical properties of QD-Apt nanoparticles (NPs) were thoroughly characterized. Biocompatibility of the NPs was evaluated, and the results suggested that the QD-Apt was nontoxic in vivo and vitro. Furthermore, the use of the QD-Apt in labeling glioma cell lines and human brain glioma tissues, and target gliomas in situ was also investigated. We found that not only could QD-Apt specially bind to the U87-EGFRvIII glioma cells but also bind to human glioma tissues in vitro. Fluorescence imaging in vivo with orthotopic glioma model mice bearing U87-EGFRvIII showed that QD-Apt could penetrate the blood-brain barrier and then selectively accumulate in the tumors through binding to EGFRvIII, and consequently, generate a strong fluorescence, which contributed to the margins of gliomas that were visualized clearly, and thus, help the surgeons realize the maximum safe resection of glioma. In addition, QD-Apt can also be applied in preoperative diagnosis and postoperative examination of glioma. Therefore, these achievements facilitate the use of tumor-targeted fluorescence imaging in the diagnosis, surgical resection, and postoperative examination of glioma.


Asunto(s)
Aptámeros de Nucleótidos/química , Neoplasias Encefálicas/diagnóstico por imagen , Receptores ErbB/genética , Glioma/diagnóstico por imagen , Puntos Cuánticos/química , Animales , Aptámeros de Nucleótidos/farmacocinética , Biotina/química , Línea Celular Tumoral , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Receptores ErbB/metabolismo , Fluorescencia , Glioma/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Terapia Molecular Dirigida/métodos , Nanoestructuras/química , Polietilenglicoles/química , Puntos Cuánticos/toxicidad , Distribución Tisular
7.
Nature ; 533(7601): 77-81, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27096371

RESUMEN

New methods and strategies for the direct functionalization of C-H bonds are beginning to reshape the field of retrosynthetic analysis, affecting the synthesis of natural products, medicines and materials. The oxidation of allylic systems has played a prominent role in this context as possibly the most widely applied C-H functionalization, owing to the utility of enones and allylic alcohols as versatile intermediates, and their prevalence in natural and unnatural materials. Allylic oxidations have featured in hundreds of syntheses, including some natural product syntheses regarded as "classics". Despite many attempts to improve the efficiency and practicality of this transformation, the majority of conditions still use highly toxic reagents (based around toxic elements such as chromium or selenium) or expensive catalysts (such as palladium or rhodium). These requirements are problematic in industrial settings; currently, no scalable and sustainable solution to allylic oxidation exists. This oxidation strategy is therefore rarely used for large-scale synthetic applications, limiting the adoption of this retrosynthetic strategy by industrial scientists. Here we describe an electrochemical C-H oxidation strategy that exhibits broad substrate scope, operational simplicity and high chemoselectivity. It uses inexpensive and readily available materials, and represents a scalable allylic C-H oxidation (demonstrated on 100 grams), enabling the adoption of this C-H oxidation strategy in large-scale industrial settings without substantial environmental impact.


Asunto(s)
Carbono/química , Técnicas de Química Sintética , Hidrógeno/química , Oxidantes/química , Compuestos Alílicos/química , Productos Biológicos/síntesis química , Productos Biológicos/química , Electroquímica , Tecnología Química Verde , Oxidación-Reducción , Especificidad por Sustrato
8.
Chemistry ; 22(16): 5692-7, 2016 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-26990693

RESUMEN

A selection of heteroaryl fluorosulfates were readily synthesized using commercial SO2F2 gas. These substrates are highly efficient coupling partners in the Suzuki reaction. Through judicious selection of Pd catalysts the fluorosulfate functionality is differentiated from bromide and chloride; the order of reactivity being: -Br> -OSO2 F> -Cl. Exploiting this trend allowed the stepwise chemoselective synthesis of a number of polysubstituted pyridines, including the drug Etoricoxib.


Asunto(s)
Paladio/química , Piridinas/síntesis química , Sulfonas/síntesis química , Catálisis , Etoricoxib , Estructura Molecular , Piridinas/química , Sulfonas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...